Plan For Today: Hand-in Chapter 7 Assignment for Checking Completion

- 1. Question about anything from last week? 6.4, 7.1-7.3, 8.1-8.2
 - O DO TEST 5
- 2. Continue Chapter 8: Logarithmic Functions
 - √ 8.1: Understanding Logarithms
 - ✓ 8.2: Transformations of Logarithmic Functions
 - 8.3: Laws of Logarithms
 - 8.4: Logarithmic & Exponential Functions
- 5. Work on practice questions from Textbook

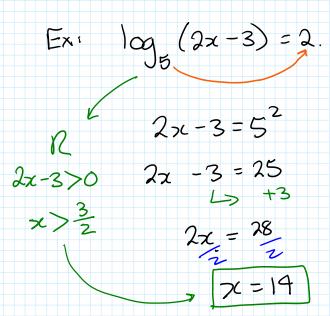
Page 400: #1-5, 8-10, 13bc, 16bc

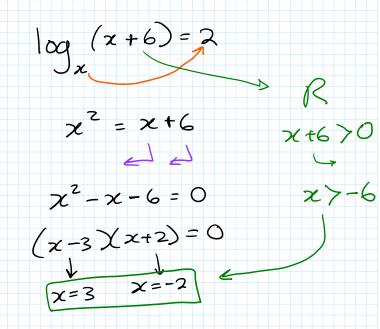
Plan Going Forward:

- 1. Finish working through extra practice & textbook questions from 8.3 and continue working on the Ch. 8 Assignment.
- 2. You will go over 8.3 practice and start 8.4 solving log equations tomorrow.
 - Chapter 8 assignment due thursday, June 8th or Monday, June 12th
 - ❖ TEST 6 ON 8.2-9.2 ON MONDAY, JUNE 12TH

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class.

Anurita Dhiman = adhiman@sd35.bc.ca Susana Egolf = segolf@sd35.bc.ca Test 5 Review 6.4,Ch7,8.1,8.2





Logarithms - Investigation

Part I:

Part : Evaluate the expressions on the left, using your understanding of logs. Re-write each of your answers as a single logarithm, as shown in the example. Example: $\log_4(16) + \log_4(4) = 2 + 1 = 3$ This answer, 3, is equal to $\log_4(64) \log_4(64) \log_4$ We've shown that: $\log_4(16) + \log_4(4) = \log_4(64)$

2)
$$\log_3(9) + \log_3(81) =$$
 $\log_3($

these can be written as...

3)
$$\log_3(\frac{1}{9}) + \log_3(81) =$$
 $\log_3($

4)
$$\log_5(5) + \log_5(1) =$$
 $\log_5($

5) What pattern seems to hold? Write a rule:

$$\log_c X + \log_c Y = \log_c ($$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it.

8)
$$\log_8\left(\frac{3}{64}\right) + \log_8\left(\frac{1}{3}\right)$$

Logarithms - Investigation

Part I:

Evaluate the expressions on the left, using your understanding of logs.

Re-write each of your answers as a single logarithm, as shown in the example.

Example:
$$\log_4(16) + \log_4(4) = 2 + 1 = 3$$
 This answer, 3, is equal to $\log_4(64)$ We've shown that: $\log_4(16) + \log_4(4) = \log_4(64)$

1)
$$\log_2(8) + \log_2(4) = 5$$
 $\log_2(32) = 5$

2)
$$\log_3(9) + \log_3(81) =$$
 $\log_3(72?) = 6$ $\log_3(72?) = 6$ these can be written as...

3)
$$\log_3(\frac{1}{9}) + \log_3(\frac{81}{9}) = 2$$
 $\log_3(\frac{9}{2}) = 2$

4)
$$\log_{5}(5) + \log_{5}(1) = 1$$
 $\log_{5}(5) = 1$

5) What pattern seems to hold? Write a rule:

$$\log_c X + \log_c Y = \log_c (XY)$$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it.

6)
$$\log_{n} 12 + \log_{n} 3 = \log_{\beta} (12 \cdot 3)$$

= $\log_{\beta} (36) = 2$

7)
$$\log 250 + \log 40 = \log_2(250 \cdot 40)$$

= $\log_2(10000)$
= 4

8)
$$\log_8(\frac{1}{64}) + \log_8(\frac{1}{4}) = \log_8(\frac{3}{64}, \frac{1}{3})$$

$$= \log_8(\frac{1}{64})$$

$$= \log_8(\frac{1}{64})$$

$$= \log_8(\frac{1}{62})$$

$$= \log_8(8^{-2}) = 2$$

This result links to an exponent law we already know:

Part II:

Evaluate the expressions on the left, using your understanding of logs. Re-write each of your answers as a single logarithm, as shown in the example.

Example: $\log_4(64) - \log_4(16) = 3 - 2 = 1$ This answer, 1, is equal to $\log_4(4)$ We've shown that: $\log_4\left(64\right) - \log_4\left(16\right) = \log_4\left(4\right)$

10)
$$\log_6 36 - \log_6 6 =$$
 $\log_6 ($

12)
$$\log_2 16 - \log_2 32 =$$
 $\log_2 ($

13) What pattern seems to hold? Write a rule:

$$\log_c X - \log_c Y = \log_c ($$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it.

Part II:

Evaluate the expressions on the left, using your understanding of logs. Re-write each of your answers as a single logarithm, as shown in the example.

$$\begin{aligned} &\textbf{Example:} \ \log_4(64) - \log_4(16) = 3 - 2 = 1 & \text{This answer, 1, is equal to } \log_4(4) \\ &\text{We've shown that:} & \log_4(64) - \log_4(16) = \log_4(4) \end{aligned}$$

which is the same as...

$$\log_{105}(125) = 3$$

10)
$$\log_6 \frac{36}{2} - \log_6 \frac{6}{6} = 1$$

$$\log_6(G) \approx 1$$

12)
$$\log_2 \frac{16}{16} - \log_2 \frac{32}{32} = \frac{1}{12}$$

$$\log_2(\frac{1}{2}) \sim \ell$$

13) What pattern seems to hold? Write a rule:

$$\log_c X - \log_c Y = \log_c \left(\frac{X}{Y}\right)$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it.

14)
$$\log_6 72 - \log_6 2 = \log_6 \left(\frac{\pi 2}{2}\right)$$

$$= \log_6 \left(36\right) = 2$$

15)
$$\log 12 - \log 0.12 = \log \left(\frac{12}{0.12}\right)$$

= $\log (\log 0) = 2$

$$16) \log_{12} 2 - \log_{12} 288 = \log_{12} \left(\frac{2}{288}\right)$$

$$= \log_{12} \left(\frac{1}{147}\right)$$

$$= \log_{12} \left(\frac{1}{12^2} \right)$$

This result also links to an exponent law we already know:

$$|\log_{12}\left(\frac{2}{288}\right)|$$

$$= \log_{12}\left(\frac{1}{147}\right)|$$

$$= \log_{12}\left(\frac{1}{12}\right)|$$

$$= \log_{12}\left(12^{2}\right)|$$

$$= \log_{12}\left(12^{2}\right)|$$

$$= \log_{12}\left(12^{2}\right)|$$

$$= \log_{12}\left(12^{2}\right)|$$

$$= \log_{12}\left(12^{2}\right)|$$

Your Turn

Use the laws of logarithms to simplify and evaluate each expression.

b)
$$\log_5 1000 - \log_5 4 - \log_5 2$$

$$= \log_5\left(\frac{1000}{4}\right) - \log_5 2$$

$$= \log_s(250) - \log_s 2$$

$$= \log_5\left(\frac{250}{2}\right)$$

c)
$$2 \log_3 6 - \frac{1}{2} \log_3 64 + \log_3 2$$

$$= \log_3(\frac{36}{8}) + \log_3 2$$

$$= \log_3\left(\frac{36\times2}{8}\right)$$

$$= \log_3\left(\frac{72}{8}\right) = \log_3 9 = 2$$

8.3: Laws of Logarithms

Rule of Logarithms

Rule Name	Property
Log of 1	log _b 1 = 0
Log of the same number as base	log _b b = 1
Product Rule	$\log_b(mn) = \log_b m + \log_b$
Quotient Rule	$\log_b(\frac{m}{n}) = \log_b m - \log_b n$
Power Rule	log _b m" = n log _b m
Change of Base Rule	$\log_3 b = \frac{\log_2 b}{\log_2 a}$ (OR) $\log_3 b \cdot \log_2 a = \log_3 b$
Equality Rule	$\log_b a = \log_b c \Rightarrow a = c$
Number Raised to Log	Pio®× = X
Other Rules	$\log_b a^m = \frac{m}{n} \log_b a$
	$-\log_{6}a = \log_{6}\frac{1}{a}$
	(OR)
	= log _l a

Rule 1:
$$log_b(M \cdot N) = log_b M + log_b N$$

Rule 2:
$$\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$$

$$\text{Rule 3: } \log_b\left(\overset{\textstyle M}{\text{M}}^k \right) = k \cdot \log_b \overset{\textstyle M}{\text{M}}$$

Rule 4:
$$log_b(1) = 0$$

Rule 5:
$$log_b(b) = 1$$

Rule 6:
$$log_b(b^k) = k$$

$$\text{Rule 7: } b^{log_{\flat}\left(k\right)}=k$$

Where:

b > 0 but $b \ne 1$, and M, N, and k are real numbers but M and N must be positive!

©chilimath.com

- The Law of Logarithms for Powers (Power Law) = $\log_a x^n = n \log_a x$
- The Law of Logarithms for Roots = $\log_x \sqrt[n]{x^m} = \log_a x^{\frac{m}{n}} = \frac{m}{n} \log_a x$
- The Multiplication Law of Logs (Product Law)= $\log_a xy = \log_a x + \log_a y$
- The Division Law of Logs (Quotient Law)= $\log_a \frac{x}{y} = \log_a x \log_a y$

$$\begin{aligned} 5\log_{3}(x) + 2\log_{3}(4x) - \log_{3}\left(8x^{5}\right) &= \log_{3}\left(x^{5}\right) + \log_{3}\left((4x)^{2}\right) - \log_{3}\left(8x^{5}\right) \\ &= \log_{3}\left(x^{5}\right) + \log_{3}\left((16x^{2}\right) - \log_{3}\left(8x^{5}\right) \\ &= \log_{3}\left(16x^{2}\right) - \log_{3}\left(8x^{5}\right) \\ &= \log_{3}\left(16x^{2}\right) - \log_{3}\left(8x^{5}\right) \\ &= \log_{3}\left(\frac{16x^{2}}{8x^{5}}\right) \end{aligned}$$

$$5\log_{3}(x) + 2\log_{3}(4x) - \log_{3}\left(8x^{5}\right) = \log_{3}\left(2x^{2}\right)$$

$$\log_{6}\left(\frac{36m^{3}}{\sqrt{n}}\right) = \log_{6}\left(36m^{3}\right) - \log_{6}\left(\sqrt{n}\right)$$

$$= \log_{6}\left(36\right) + \log_{6}\left(m^{3}\right) - \log_{6}\left(n^{\frac{1}{2}}\right)$$

$$= \log_{6}\left(6^{2}\right) + 3\log_{6}\left(m\right) - \frac{1}{2}\log_{6}\left(n\right)$$

$$= 2\log_{6}\left(6\right) + 3\log_{6}\left(m\right) - \frac{1}{2}\log_{6}\left(n\right)$$

$$\log_{6}\left(\frac{36m^{3}}{\sqrt{n}}\right) = 2 + 3\log_{6}\left(m\right) - \frac{1}{2}\log_{6}\left(n\right)$$

$$2\log_{5}\left(m\right) + 3\log_{5}\left(k\right) - 8\log_{5}\left(y\right) = \log_{5}\left(m^{2}\right) + \log_{5}\left(k^{3}\right) - \log_{5}\left(y^{8}\right)$$

$$= \log_{5}\left(m^{2} \cdot k^{3}\right) - \log_{5}\left(y^{8}\right)$$

$$= \log_{5}\left(m^{2}k^{3}\right) - \log_{5}\left(y^{8}\right)$$

$$3 + \frac{1}{2}\log_{4}(x) + \frac{1}{2}\log_{4}(y) = 3 + \log_{4}\left(x^{\frac{1}{2}}\right) + \log_{4}\left(y^{\frac{1}{2}}\right)$$

$$= 3 + \log_{4}\left(x^{\frac{1}{2}} \cdot y^{\frac{1}{2}}\right)$$

$$= 3 + \log_{4}\left(\sqrt{x} \cdot \sqrt{y}\right)$$

$$= 3 + \log_{4}\left(\sqrt{xy}\right)$$

$$= 3 + \log_{4}\left(\sqrt{xy}\right)$$

$$= 3 \cdot \log_{4}\left(4\right) + \log_{4}\left(\sqrt{xy}\right)$$
Since $\log_{4}\left(4\right) = 1$

$$= \log_{4}\left(4^{3}\right) + \log_{4}\left(\sqrt{xy}\right)$$

$$= \log_{4}\left(4^{3} \cdot \sqrt{xy}\right)$$

$$= \log_{4}\left(4^{3} \cdot \sqrt{xy}\right)$$

$$3 + \frac{1}{2}\log_{4}\left(x\right) + \frac{1}{2}\log_{4}\left(y\right) = \log_{4}\left(64\sqrt{xy}\right)$$

• Common Base Law = $\log_a a^x = x$ OR $a^{\log_a x} = x$

$$\log_{a} N = x$$
 $a^{x} = N$
 $\log_{a} N = x$
 $a^{x} = N$
 $\log_{2} 8 = 3$
 $a^{\log_{a} N} = N$
 $3^{4} = 81$
 $\log_{3} 81 = 4$
 $5^{3} = 125$
 $\log_{5} 125 = 3$
 $10^{4} = 100000$
 $\log_{10} 100000 = 4$
 $7^{1} = 7$
 $\log_{7} 7 = 1$
 $5^{0} = 1$
 $\log_{5} 1 = 0$

There are

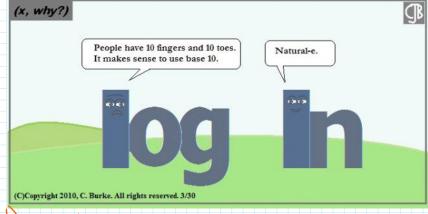
4(log₃₆6)

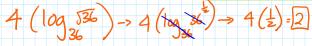
types of people in

this world:

Those who understand
logarithms and those

who don't.





8.3 **Laws of Logarithms**

Product Law:

$$\log_c(MN) = \log_c M + \log_c N$$

Quotient Law:

$$\log_c \left(\frac{M}{N} \right) = \log_c M - \log_c N$$

Power Law:

$$\log_c \left(M^P \right) = P \log_c M$$

To Try:

1. Evaluate without using use the "log" button:

$$\log_3 54 - \log_3 2 = \log_3 \left(\frac{54}{2}\right)$$

$$= \log_3 37 - \log_3 3$$
calculator:

2. Find the value of each of the following without using a calculator:

Recall:

2. Find the value of each of the following without
$$2 + \ln x$$

a) $\ln 1 = 0$

b) $\ln e = 1$

or $\ln e = 0$

Recall:

3. Evaluate without using the "log" button:

g a calculator:

c)
$$\ln e^4 = 4$$
 $\log_{14} 4 + \log_{14} 49 = \log_{14} \log_{14}$

Change of Base Formula:

common logs (lagio

1. Evaluate. Give answer correct to 4 decimal places.

$$\frac{\log_2 18}{\log_5 6} = \frac{\log_2 18}{\log_5 6}$$

2. Express as a single logarithm.

3. Rewrite this equation so you can graph it on a graphing calculator: $y = \log_4 x$

$$y = \frac{\log x}{\log 4}$$

Your Turn p.395

a)
$$\log_6 \frac{X}{V} = \log_6 x - \log_6 y$$
 questient

b)
$$\log_5 \sqrt{xy} = \log_5 (xy)^2$$
 operer law = \frac{1}{2} \langle \langle zy

Write each expression in terms of individual logarithms of
$$x$$
, y , and z .

a) $\log_6 \frac{x}{y}$ = $\log_6 (xy)^2$ operer $\log_5 (xy)^2$ operer $\log_3 (xy)^2$ of $\log_3 (xy)^2$ operer $\log_3 (xy)^2$ of $\log_3 (xy)^2$ operer $\log_3 (xy)^2$ op

d)
$$\log_7 \frac{x}{\sqrt{Z}}$$

d)
$$\log_7 \frac{y}{\sqrt{Z}}$$
 $\log_7 \frac{y}{\sqrt{Z}}$ $\log_3 \frac{z}{\sqrt{3}} - \frac{2}{3}\log_3 x$

0) product
 $\frac{1}{\sqrt{2}} + \log_7 y - \log_7 z^{\frac{1}{2}}$

2) power
 $\log_7 x + \log_7 y - \log_7 z^{\frac{1}{2}}$

2) power
 $\log_7 x + \log_7 y - \log_7 z^{\frac{1}{2}}$

p.396 **Your Turn**

Use the laws of logarithms to simplify and evaluate each expression.
a)
$$\log_3 9\sqrt{3} \longrightarrow 0$$
 common base 3: $\log_3 3 \cdot 8^{\frac{1}{2}} \rightarrow \log_3 3^{\frac{1}{2}} = \frac{1}{2}$

b)
$$\log_5 1000 - \log_5 4 - \log_5 2$$

c)
$$2 \log_3 6^2 - \frac{1}{2} \log_3 64^2 + \log_3 2$$

Ogustent
$$\log_5\left(\frac{1000}{4}\right) = \log_5\left(\frac{1000}{4}\right)$$

(2) Simplify
$$= \log_5\left(\frac{1000}{4}\right)$$

(a)
$$2 \log_3 6^2 - \frac{1}{2} \log_3 64^2 + \log_3 2$$

(b) $2 \log_3 6^2 - \frac{1}{2} \log_3 64^2 + \log_3 2$

(c) $2 \log_3 6^2 - \frac{1}{2} \log_3 64^2 + \log_3 2$

(d) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(e) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(f) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g) $2 \log_3 6^2 - \log_3 64^2 + \log_3 2$

(g)

	Pre-Calc 12 – Unit 3 Page 13	
$1. \log_3(4y^2)$ $= \log_3 4 + 2\log y$	$6. \frac{1}{2} (\log b - \log c)$	
2. $2\log_4 b + 3\log_4 c$ $\log_4 b^2 + \log_2 c^3$ $= \log_4 b^2 c^3$	7. $\log\left(\frac{\sqrt{a}}{c^2}\right)$	
3. ln(<i>ab</i>)	$8. \log(x^2y)^4$	
$4. \log \left(\frac{a}{b}\right)$	$9. 3\log x - \log w^2$	
$5. \frac{1}{2} \log a + 2 \log c$	$10. \log\left(\frac{1000a^2}{c}\right) = \sigma_3 000 + \sigma_3 ^2 - \sigma_3 c$ $= \sigma_3 0^3 + \sigma_3 ^2 - \sigma_3 c$ $= 3 + 2 \sigma_3 \alpha - \sigma_3 c$	

12. $\log\left(\frac{\sqrt{hc}}{a}\right)$ 17. $\log a + 3\log b - 2\log c$ 13. $2\log a - 4\log b$ 18. $5\log_{2} 2 - \frac{1}{3}\log_{4} 8$ 14. $\log(a^{2}c)$ 19. $\frac{\log_{4} x}{4} - \log_{4}(3x)$ 15. $\log\left(\frac{x}{3w}\right)$ 20. $2\log c - (3\log a + \log b)$	11. $\log_5(5x\sqrt{y})$	Pre-Calc 12 – Unit 3 Page 14 16. $\log_7 y - 2\log_7 w + \log_7 (5x)$	
12. $\log\left(\frac{x-x}{a}\right)$ 13. $2\log a - 4\log b$ 18. $5\log_4 2 - \frac{1}{3}\log_4 8$ 14. $\log(a^2c)$ 19. $\frac{\log_5 x}{4} - \log_5(3x)$	(v/ba)	17. $\log a + 3 \log b - 2 \log c$	
$14. \log(a^2c)$ $19. \frac{\log_5 x}{4} - \log_5(3x)$			
	$13. \ 2\log a - 4\log b$	$18. \ 5\log_4 2 - \frac{1}{3}\log_4 8$	
$15. \log \left(\frac{x}{yw}\right)$ $20. 2 \log c - (3 \log a + \log b)$	14. $\log(a^2c)$	$19. \frac{\log_5 x}{4} - \log_5 (3x)$	
	$15. \log \left(\frac{x}{yw} \right)$	$20. \ 2\log c - (3\log a + \log b)$	