Plan For Todays

1. Question about anything from last week? 6.4, 7.1-7.3, 8.1-8.2

- DO TEST 5

2. Continue Chapter 8: Logarithmic Functions
\checkmark 8.1: Understanding Logarithms
\checkmark 8.2: Transformations of Logarithmic Functions

* 8.3s Laws of Logarithms
* 8.4: Logarithmic \& Exponential Functions

5. Work on practice questions from Textbook

Page 400:
\#1-5, 8-10, 13bc, 16bc

Why do lumberjacks make good musicians?

desmos.com

Plan Going Forwards

1. Finish working through extra practice \& textbook questions from 8.3 and continue working on the Ch. 8 Assignment.
2. You will go over 8.3 practice and start 8.4 solving log equations tomorrow.

CHAPTER 8 ASSIGNMENT DUE THURSDAY, JUNE OTH OR
 MONDAY JUNE TZTH
 TEST 6 ON B.2-9. 2 ON MONDAY. SUNE T2TH

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca

Test 5 Review 6.4,Ch7,8.1,8.2

Logarithms - Investigation

Part I:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example. Example: $\log _{4}(16)+\log _{4}(4)=2+1=3 \quad$ This answer, 3 , is equal to $\log _{4}(64)$
We've shown that: $\log _{4}(16)+\log _{4}(4)=\log _{4}(64)$

1) $\log _{2}(8)+\log _{2}(4)=$ \qquad $\log _{2}(\quad)$
2) $\log _{3}(9)+\log _{3}(81)=$ $\log _{3}(\quad)$
3) $\log _{3}\left(\frac{1}{9}\right)+\log _{3}(81)=$ \qquad
these can be written as...
4) $\log _{5}(5)+\log _{5}(1)=$ \qquad $\log _{3}(\quad)$ $\log _{5}(\quad)$
5) What pattern seems to hold? Write a rule:

$$
\log _{c} X+\log _{c} Y=\log _{c}(\quad)
$$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it
6) $\log _{6} 12+\log _{6} 3$
7) $\log 250+\log 40$
8) $\log _{8}\left(\frac{2}{\mathrm{M}}\right)+\log _{8}\left(\frac{1}{3}\right)$

Logarithms - Investigation

Part I:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(16)+\log _{4}(4)=2+1=3 \quad$ This answer, 3 , is equal to $\log _{4}(64)$ We've shown that: $\log _{4}(16)+\log _{4}(4)=\log _{4}(64)$

1) $\log _{2}(8)+\log _{2}(4)=5$
$\log _{2}(32)=5$
$3+2$
2) $\log _{3}(9)+\log _{3}(81)=6 \quad \log _{3}(729)=6$
3) $\log _{3}\left(\frac{8}{2}\right)+\log _{3}(81)=2 \quad \log _{3}(9)=2$
$-2+4$
$\log _{5}(5)=1$
4) What pattern seems to hold? Write a rule:

$$
\log _{c} X+\log _{c} Y=\log _{c}(X Y)
$$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it.

$\text { 6) } \begin{aligned} \log _{6} 12+\log _{6} 3 & =\log _{6}(12 \cdot 3) \\ & =\log _{6}(36)=2 \end{aligned}$	This result links to an exponent law we already know:
$\text { 7) } \begin{aligned} \log 250+\log 40 & =\log (250 \cdot 40) \\ & =\log (10000) \\ & =4 \end{aligned}$	$\log _{c} x=a$ means $C^{a}=x$
$\text { 8) } \begin{aligned} \log _{8}\left(\frac{2}{4}\right)+\log _{8}\left(\frac{1}{8}\right) & =\log _{8}\left(\frac{3}{64} \cdot \frac{1}{3}\right) \\ & =\log _{8}\left(\frac{1}{64}\right) \\ & =\log _{8}\left(\frac{1}{8^{2}}\right) \\ & =\log _{8}\left(8^{-2}\right)=-2 \end{aligned}$	

Part II:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(64)-\log _{4}(16)=3-2=1 \quad$ This answer, 1 , is equal to $\log _{4}(4)$
We've shown that: $\quad \log _{4}(64)-\log _{4}(16)=\log _{4}(4)$
9) $\log , 625-\log _{,} 5=$ \qquad $\log _{5}(\quad)$
10) $\log _{6} 36-\log _{6} 6=$ \qquad $\log _{6}(\quad)$
11) $\log _{3} 9-\log _{3} 1=$ \qquad which is the same as $\log _{3}(\quad)$
12) $\log _{2} 16-\log _{2} 32=$ \qquad $\log _{2}(\quad)$
13) What pattern seems to hold? Write a rule:

$$
\log _{c} X-\log _{c} Y=\log _{c}(\quad)
$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it
14) $\log _{6} 72-\log _{6} 2$
15) $\log 12-\log 0.12$
16) $\log _{12} 2-\log _{12} 288$

Part II:
Evaluate the expressions on the left, using your understanding of logs Re-write each of your answers as a single logarithm, as shown in the example.

Example: $\log _{4}(64)-\log _{4}(16)=3-2=1 \quad$ This answer, 1 , is equal to $\log _{4}(4)$

$$
\text { We've shown that: } \quad \log _{4}(64)-\log _{4}(16)=\log _{4}(4)
$$

9) $\log _{5} 625-\log _{5} 5=3$
$\log _{9}(125)=3$
10) $\log _{6} \frac{36-\log _{6} 6}{2-1}=1$
$\log _{6}(6)=1$
11) $\log _{3} 9-\log _{1} 1=2$
$\log _{3}(9)=2$
2-0
$\log _{2}\left(\frac{1}{2}\right)-1$
$\log _{2} 16-\log _{2}$
$4-5$
12) What pattern seems to hold? Write a rule

$$
\log _{c} X-\log _{c} Y=\log _{c}\left(\frac{X}{Y}\right)
$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it.
14) $\log _{6} 72-\log _{6} 2=\log _{6}\left(\frac{72}{2}\right)$

$$
=\log _{6}(36)=2
$$

15) $\log 12-\log 0.12=\log \left(\frac{12}{0.12}\right)$

$$
=\log (100)=2
$$

16) $\log _{12} 2-\log _{12} 288=\log _{12}\left(\frac{2}{288}\right)$

$$
=\log _{12}\left(\frac{1}{144}\right)
$$

$$
=\log _{12}\left(\frac{1}{12^{2}}\right)
$$

$$
=\log _{12}\left(12^{-2}\right)=-2
$$

This result also links to an exponent law we already know: $\left.\begin{array}{l}\log _{c} x=a \text { means } c^{a}=x \\ \log _{c} y=b \text { means } c^{b}=y\end{array}\right\} \begin{aligned} & \text { definition } \\ & \text { of } \\ & \log a_{i t i m n}\end{aligned}$ $\log _{c} t=b$ $\log _{C}\left(\frac{X}{Y}\right)$
$=\log _{c}\left(c^{a^{-b}}\right)+\underbrace{-2 m a n}$
$=a-b\}$ dethuntoon of logmitm
$=\log _{c} x-\log _{c} y$

Your Turn

Use the laws of logarithms to simplify and evaluate each expression.
b) $\underbrace{\log _{5} 1000-\log _{5} 4}-\log _{5} 2$

$$
\begin{aligned}
& =\log _{5}\left(\frac{1000}{4}\right)-\log _{5} 2 \\
& =\log _{5}(250)-\log _{5} 2 \\
& =\log _{5}\left(\frac{250}{2}\right) \\
& =\log _{5} 125=3
\end{aligned}
$$

c) $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$
$=\log _{3} 6^{2}-\log _{3} 64^{1 / 2}+\log _{3} 2$
$=\log _{3} 36-\log _{3} 8+\log _{3} 2$
$=\log _{3}\left(\frac{36}{8}\right)+\log _{3} 2$
$=\log _{3}\left(\frac{36 \times 2}{8}\right)$

$$
=\log _{3}\left(\frac{72}{8}\right)=\log _{3} 9=2
$$

Rule of Logarithms

Rule 1: $\log _{b}(M \cdot N)=\log _{b} M+\log _{b} N$
Rule 2: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
Rule 3: $\log _{b}\left(M^{k}\right)=k \cdot \log _{b} M$
Rule 4: $\log _{b}(1)=0$
Rule 5: $\log _{b}(b)=1$
Rule 6: $\log _{b}\left(b^{k}\right)=k$
Rule 7: $b^{\log _{b}(k)}=k$

Where:

$b>O$ but $b \neq 1$, and M, N, and k are real numbers but M and N must be positive!
(C)chilimath.com

- The Law of Logarithms for Powers (Power Law) $=\log _{a} x^{n}=n \log _{a} x$
- The Law of Logarithms for Roots $=\log _{x} \sqrt[n]{x^{m}}=\log _{a} x^{\frac{m}{n}}=\frac{m}{n} \log _{a} x$
- The Multiplication Law of Logs (Product Law) $=\log _{a} x y=\log _{a} x+\log _{a} y$
- The Division Law of Logs (Quotient Law) $=\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$

$$
\begin{aligned}
& 5 \log _{3}(x)+2 \log _{3}(4 \mathrm{x})-\log _{3}\left(8 \mathrm{x}^{5}\right)=\log _{3}\left(\mathrm{x}^{5}\right)+\log _{3}\left((4 \mathrm{x})^{2}\right)-\log _{3}\left(8 \mathrm{x}^{5}\right) \\
& =\log _{3}\left(x^{5}\right)+\log _{3}\left(16 x^{2}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(x^{5} \cdot 16 x^{2}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(16 x^{7}\right)-\log _{3}\left(8 x^{5}\right) \\
& =\log _{3}\left(\frac{16 x^{7}}{8 x^{5}}\right) \\
& 5 \log _{3}(\mathrm{x})+2 \log _{3}(4 \mathrm{x})-\log _{3}\left(8 \mathrm{x}^{5}\right)=\log _{3}\left(2 \mathrm{x}^{2}\right) \\
& \log _{6}\left(\frac{36 m^{3}}{\sqrt{n}}\right)=\log _{6}\left(36 m^{3}\right)-\log _{6}(\sqrt{n}) \\
& =\log _{6}(36)+\log _{6}\left(m^{3}\right)-\log _{6}\left(n^{\frac{1}{2}}\right) \\
& =\log _{6}\left(6^{2}\right)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& =2 \log _{6}(6)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \text { Rule } 5 \Rightarrow \log _{6}(6)=1 \\
& =2(1)+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& \log _{6}\left(\frac{36 m^{3}}{\sqrt{n}}\right)=2+3 \log _{6}(m)-\frac{1}{2} \log _{6}(n) \\
& 2 \log _{5}(\mathrm{~m})+3 \log _{5}(\mathrm{k})-8 \log _{5}(\mathrm{y})=\log _{5}\left(\mathrm{~m}^{2}\right)+\log _{5}\left(\mathrm{k}^{3}\right)-\log _{5}\left(\mathrm{y}^{8}\right) \\
& =\log _{5}\left(\mathrm{~m}^{2} \cdot \mathrm{k}^{3}\right)-\log _{5}\left(\mathrm{y}^{8}\right) \\
& =\log _{5}\left(m^{2} k^{3}\right)-\log _{5}\left(y^{8}\right) \\
& 2 \log _{5}(\mathrm{~m})+3 \log _{5}(\mathrm{k})-8 \log _{5}(\mathrm{y})=\log _{5}\left(\frac{\mathrm{~m}^{2} \mathrm{k}^{3}}{\mathrm{y}^{8}}\right)
\end{aligned}
$$

$$
\begin{aligned}
3+\frac{1}{2} \log _{4}(x)+\frac{1}{2} \log _{4}(y) & =3+\log _{4}\left(x^{\frac{1}{2}}\right)+\log _{4}\left(y^{\frac{1}{2}}\right) \\
& =3+\log _{4}\left(x^{\frac{1}{2}} \cdot y^{\frac{1}{2}}\right) \\
& =3+\log _{4}(\sqrt{x} \cdot \sqrt{y}) \\
& =3+\log _{4}(\sqrt{x y}) \\
& =3 \cdot \log _{4}(4)+\log _{4}(\sqrt{x y}) \text { Since } \log _{4}(4)=1 \\
& =\log _{4}\left(4^{3}\right)+\log _{4}(\sqrt{x y}) \\
& =\log _{4}\left(4^{3} \cdot \sqrt{x y}\right) \\
3+\frac{1}{2} \log _{4}(x)+\frac{1}{2} \log _{4}(y) & =\log _{4}(64 \sqrt{x y})
\end{aligned}
$$

- Common Base Law $=\log _{a} a^{x}=x$ OR $a^{\log _{a} x}=x$

$$
\begin{array}{lll}
\log _{\mathrm{a}} \boldsymbol{N}=\boldsymbol{x} & \boldsymbol{a}^{\times}=\boldsymbol{N} & \log _{\mathrm{a}} \boldsymbol{N}=\boldsymbol{x} \\
\boldsymbol{a}^{\boldsymbol{x}}=\boldsymbol{N} & 2^{3}=8 & \log _{2} 8=3 \\
\boldsymbol{a}^{\log _{a} \boldsymbol{N}}=\boldsymbol{N} & \mathbf{3}^{4}=81 & \log _{3} 81=4 \\
& \mathbf{5}^{3}=125 & \log _{5} 125=3 \\
& \mathbf{1 0}^{4}=10000 & \log _{10} 10000=4 \\
& \mathbf{7}^{1}=7 & \log _{7} 7=1 \\
& \mathbf{5}^{0}=1 & \log _{5} 1=\mathbf{0}
\end{array}
$$

(x, why?)

People have 10 fingers and 10 toes. It makes sense to use base 10 .

(C)Copyright 2010, C. Burke. All rights reserved. 3/30

$$
4\left(\log _{36} \sqrt{36}\right) \rightarrow 4\left(\operatorname{lo}_{x} x^{\frac{1}{6}}\right) \rightarrow 4\left(\frac{1}{2}\right)=2
$$

8.3 Laws of Logarithms

Product Law:	$\log _{c}(M N)=\log _{c} M+\log _{c} N$
Quotient Law:	$\log _{c}\left(\frac{M}{N}\right)=\log _{c} M-\log _{c} N$
Power Law:	$\log _{c}\left(M^{P}\right)=P \log _{c} M$

To Try:

1. Evaluate without using use the "log" button:

Recall:

$$
\begin{aligned}
& \begin{aligned}
& \log _{3} 54-\log _{3} 2=\log _{3}\left(\frac{54}{2}\right) \\
&=\log _{3} 27 \rightarrow \log _{3} 3^{3} \\
& \text { subtraction } \\
& \text { calculator: }
\end{aligned}={ }_{3}
\end{aligned}
$$

2. Find the value of each of the following without using a calculator:

$$
\log _{e} x=\ln x
$$

$$
\text { a) } \ln 1=0
$$

$$
\text { (9) } \ln _{1}=1
$$

$$
\text { bl troo=0 } \quad \text { bl } \log _{k} e^{2}=1
$$

$$
\text { c) } \text { mace }^{4}=4
$$

3. Evaluated without using the "log" button:

$$
\text { Change of Base Formula: } \quad \begin{aligned}
\log _{C} A= & ? \frac{\log A}{\log C} \\
& \uparrow \uparrow \begin{array}{l}
\text { common logs } \\
\vdots \text { use calk. }
\end{array} \\
& \left.=\log _{10}\right)
\end{aligned}=
$$

1. Evaluate. Give answer correct to 4 decimal places.
2. Express as a single logarithm.

$\log _{2} 18=\frac{\log 18}{\log 2}$
4.1699
3. Rewrite this equation so you can graph it on a graphing calculator: $y=\log _{4} x$

$$
y=\frac{\log x}{\log 4}
$$

Your Turn p. 395

Write each expression in terms of individual logarithms of x, y, and z.
a) $\log _{6} \frac{x}{y} \ldots=\log _{6} x-\log _{6} y$ quotient
b) $\log _{5} \sqrt{x y} \quad=\log _{5}(x y)^{\frac{1}{2}}$ هpaoverlaw $\rightarrow \frac{1}{2} \log _{5} x y$
c) $\log _{3} \frac{9}{\sqrt[3]{x^{2}}} \rightarrow-$ O Product $_{5} \quad$ (2) $\log _{3} 9$ clout $\rightarrow=-\frac{1}{2}\left(\log _{5} x+\log _{5} y\right)$


```
d) \(\log _{7} \frac{x}{\sqrt{z}} \stackrel{n}{\rightarrow} \rightarrow\)
\(\downarrow\)
\(=\log _{7} x^{5}+\log _{7} y-\log _{7} z^{\frac{1}{2}}\)
```

(1) product
(1) product
(2) power low $=5 \log _{7} x+\log _{7} y-\frac{1}{2} \log _{7} 2$

Your Turn p. 396

Use the laws of logarithms to simplify and evaluate each expression.
a) $\log _{3} 9 \sqrt{3} \longrightarrow$ (1) common base $3: \log _{3} 3^{2 \cdot 3^{\frac{1}{2}}} \rightarrow \log _{3} 3^{\frac{5}{2}}=\frac{5}{2}$
b) $\log _{5} 1000-\log _{5} 4-\log _{5} 2$
(c) $2 \log _{3} 6^{2}-\frac{1}{2} \log _{3} 64^{\frac{1}{2}}+\log _{3} 2$
(1) quotient $\log _{5}(1000 / 4 / 2)=\log _{5}\left(\frac{(1000}{4} \times \frac{1}{2}\right) \quad$ (1) power $\log _{3} 6^{2}-\log _{3} 64^{\frac{1}{2}}+\log _{3} 2$
(2) Simplify + Common.

$$
\begin{array}{lr}
=\log _{5}\left(\frac{1000}{8}\right) & \log _{3} 36-\log _{3} 8+\log _{3} 2 \\
=\log _{5} 125 & \text { (2) quatract } \\
\text { product }
\end{array} \log _{3}\left(\frac{36}{8} \times 2\right) \text { NOT । }
$$

11. $\log _{5}(5 x \sqrt{y})$	16. $\log _{7} y-2 \log _{7} w+\log _{7}(5 x)$
12. $\log \left(\frac{\sqrt{b c}}{a}\right)$	17. $\log a+3 \log b-2 \log c$
13. $2 \log a-4 \log b$	18. $5 \log _{4} 2-\frac{1}{3} \log _{4} 8$
14. $\log \left(a^{2} c\right)$	19. $\frac{\log _{5} x}{4}-\log _{5}(3 x)$
15. $\log \left(\frac{x}{y w}\right)$	20. $2 \log c-(3 \log a+\log b)$

