## Tonight's Class:

- Working through sections 5.5, 5.6
- Sine Law (continued)
- Cosine Law
- Work on practice questions from worktext


## To try

Triangle $A B C$ has these measurements: $A=38$ degrees, $a=15 \mathrm{~cm}, b=23 \mathrm{~cm}$. Solve this triangle, correct to 1 decimal place.


Angle of Elevation and Depression
The angle of elevation is the angle between a horizontal line from the observer and the line of sight to an object that is above the horizontal line.


The angle of depression is the angle between a horizontal line from the observer and the line of sight to an object that is below the horizontal line.


Two students are holding tethers to a helium-filled ballot that is decination/depression floating directly above the line through thentudents' feet. Alex's tether is 25 m long at an angle of inclination of $45^{\circ}$. Carmen's tether is 20 m long. To the nearest metre, determine the distance between Alex and Carmen.


$$
\begin{aligned}
& \frac{c}{\sin C}=\frac{a}{\sin A} \\
& \frac{25}{\sin C}=\frac{20}{\sin 45^{\circ}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sin C}{25}=\frac{\sin 45^{\circ}}{20} \\
& \sin C=\frac{25 \sin 45^{\circ}}{20}
\end{aligned}
$$

Is there another possible $\Delta$ ?

$$
C=\sin ^{-1}\left(\frac{2 \sin 45^{\circ}}{20}\right)
$$ supplement

$$
C=62.114 \ldots
$$

$$
B=180^{\circ}-45^{\circ}-6211^{\circ}
$$

$$
\frac{b}{\sin B}=\frac{a}{\sin A}
$$

$$
B=72.8855 \ldots
$$

$$
\begin{aligned}
& C=180^{\circ}-62.11 \ldots \\
& C=117.885 \ldots \\
& B=180^{\circ}-45^{\circ}-117.885 \ldots^{\circ} \\
& B=17.1144332^{\circ}
\end{aligned}
$$

$$
\frac{b}{\sin \left(7288 m^{\circ}\right)}=\frac{20}{\sin 45^{\circ}}
$$

$$
b=\frac{20 \sin 7288 \cdots}{\sin 45^{\circ}}
$$


5.6 Cosine Law

Focus: Apply the Cosine Law to solve problems in triangles that are not right triangles.

## Law of Cosines



Standard Form

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

## Alternative Form

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

## Example 1 Using the Cosine Law to Determine the

 Length of a SideIn each triangle, determine the length of BC to the nearest tenth of a centimetre.
a)

b)

a)


$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
a^{2} & =(15)^{2}+(19)^{2}-2(15)(19) \cos 44^{\circ} \\
\sqrt{a^{2}} & =\sqrt{175.9763138} \\
a & =13.26560642 \\
a & =13.3 \mathrm{~cm}
\end{aligned}
$$



$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b r \cos A \\
a^{2} & =15^{2}+21^{2}-2(15)(21) \cos 144^{\circ} \\
\sqrt{a^{2}} & =\sqrt{1175.680706} \\
a & =34.28820069 \\
a & \doteq 34.3 \mathrm{~cm}
\end{aligned}
$$

## Example 2

Using the Cosine Law to Determine the Measure of an Angle
a) In $\triangle \mathrm{DEF}, \mathrm{DF}=18 \mathrm{~cm}, \mathrm{DE}=12 \mathrm{~cm}$, and $\mathrm{EF}=10 \mathrm{~cm}$;
determine the measure of $\angle \mathrm{F}$ to the nearest degree.
b) In $\Delta \mathrm{GHJ}, \mathrm{GJ}=18 \mathrm{~cm}, \mathrm{GH}=21 \mathrm{~cm}$, and $\mathrm{HJ}=10 \mathrm{~cm}$;
determine the measure of $\angle \mathrm{J}$ to the nearest degree.


Alternative Form

$$
\begin{aligned}
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{aligned}
$$

$$
\text { b) } \mathrm{G}_{\mathrm{G}}^{\mathrm{j}=21} \mathrm{h=18}
$$

If instead they ask us to SOLVE the triangle, using cosine law:

1) It's best to find the LARGEST angle first
2) You can then use Sine Law to get the second angle

Doing it this way avoids running into ambiguous case

$$
\begin{aligned}
& \cos F=\frac{d^{2}+e^{2}-f^{2}}{2 d e} \\
& \cos F=\frac{10^{2}+18^{2}-12^{2}}{2(10)(18)} \\
& F=\cos ^{-1}\left(\frac{\left(10^{2}+18^{2}-12^{2}\right)}{(2(10)(18))}\right) \\
& \cos J=\frac{g^{2}+h^{2}-j^{2}}{2(g)(h)} \\
& \cos J=\frac{10^{2}+18^{2}-21^{2}}{2(10)(18)} \\
& J=\cos ^{-1}\left(\frac{\left(10^{2}+18^{2}-21^{2}\right)}{(2(10)(18))}\right) \\
& J=93^{\circ}
\end{aligned}
$$

WT, page 492

A 10 m by 20 m rectangular array of solar panels is to be installed on the flat roof of a factory in Lethbridge, Alberta. The angle of inclination tor the array should match the latitude of Lethbridge, which is $49^{\circ}$. The $20-\mathrm{m}$ side of the array rests on the roof. The cross section of the support, the roof, and the panels form a triangle with a base that is 15 m long. For this cross section, determine the measures of the other two angles to the nearest degree and the length of the support to the nearest tenth of a metre.


$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
b^{2} & =15^{2}+10^{2}-2(15)(10) \cos 49^{\circ} \\
\sqrt{b^{2}} & =\sqrt{128.1822913}
\end{aligned}
$$

$$
b=11.32176185
$$

rounds to 11.3 m
We need to use the full "version of $b$, not the raided value, as we keep on solving for the angles

$$
\begin{aligned}
\begin{aligned}
& \sin A \\
& a=\frac{\sin B}{b} \\
& \frac{\sin A}{15}=\frac{\sin 49^{\circ}}{11.3217 \ldots} \\
& \sin A=\frac{15 \sin 49^{\circ}}{11.3217 \ldots b} \\
& A=\sin ^{-1}\left(\frac{15 \sin 49^{\circ}}{11.3217 \ldots}\right) \\
& A=89.19474472^{\circ}, \quad A \pm 89^{\circ} \\
& A=180^{\circ}-89^{\circ}-49^{\circ} \\
& C=42^{\circ}
\end{aligned}
\end{aligned}
$$

CYU, page 492

Check Your Understanding
3. A retaining wall is leaning at an angle of $70^{\circ}$ to the horizontal. A rigid support is to be placed 5.0 m from the base of the wall and it will be attached to the wall 2.5 m from its base. Determine the length of the support to the nearest tenth of a metre and the measure of the angle between the support and the wall to the nearest degree.


$$
\left.\begin{array}{rl}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
a^{2} & =5^{2}+25^{2}-2(5)(2.5) \cos 70^{\circ} \\
a & =4.8 \mathrm{~m}, \text { but actuclly } \\
4.764398852
\end{array}\right] \quad B=\sin ^{-1}\left(\frac{5 \sin 70^{\circ}}{4.76 \ldots}\right)
$$

9. A fire spotter sees smoke or a bearing of $060^{\circ}$. A) a point 20 km due east of the fire spotter, a ranger the same smoke on a bearing of $320^{\circ}$.
a) How far is the smoke from each location?





$$
\begin{aligned}
\frac{f}{\sin F} & =\frac{s}{\sin S} \\
\frac{f}{\sin 30^{\circ}} & =\frac{20}{\sin 100^{\circ}} \\
f & =\frac{20 \sin 30^{\circ}}{\sin 100^{\circ}} \\
f & =10.15426612 \\
f & =10 \mathrm{~km}
\end{aligned}
$$

b) A fir crew 5 km due north of the fire spotter. How far is the crew /rom the smoke? Give the answers to the nearest kilometre.

C


$$
\begin{aligned}
& x^{2}=5^{2}+(15.55 \ldots)^{2}-2(5)(15.55 \ldots) \cos 60^{\circ} \\
& \sqrt{x^{2}}=\sqrt{189.2414712}
\end{aligned}
$$

$$
x=13.75650651
$$

$$
x \doteq 14 \mathrm{~km}
$$

$$
\text { OMIT }\left[\begin{array}{l}
\text { p } 493 \text { example } \\
\text { p502, }
\end{array}\right.
$$

Coming up

- Spring break - our next class will be on Tuesday, March 28
- Work on the worktext questions for chapter 5, except for section 5.4 (Also, there
- Complete the Chapter 5 hand-in assignment. Due March 28. are extra
- Prepare for the Chapter 5 Test, on Thursday, March 30.

Law inksteat on

