Tonight's Class:

- 7.3 Solving Exponential Equations
- 8.1 Understanding Logarithms
- Chapter 7 Review (test next class)

In 2022, the population of Abbotsford, BC, was about 168,000. Its annual growth rate was $\mathbf{2 . 2 \%}$.

$$
100 \%+2.2 \%=102.2 \%
$$

Create an equation that describes this situation and use it to estimate what the population will be in 2030 if the growth rate stays the same. (Round down, giving the answer correct to the nearest whole person.)

$$
P=168000(1.022)^{8}
$$

$$
=199947.7 \ldots
$$

Do you remember the exponent laws?
What if you don't?
Can you figure them out?

7.3 Solving Exponential Equations

$$
\begin{aligned}
& \text { Remember the rules for working with exponents: } \\
& a^{m} a^{n}=a^{m+n} \xrightarrow[\substack{\text { example, } \\
\text { and } \\
\text { way }}]{ } X^{2} \cdot X^{5} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& \begin{array}{c}
\substack{\text { and } \\
\text { way } \\
\text { do } \\
\text { figure }} \\
7
\end{array}=(x \cdot x)(x \cdot x \cdot x \cdot x \cdot x) \\
& \underset{\substack{\text { figure } \\
\text { out }}}{\substack{\text { for } \\
7}}=x^{7} \\
& (a b)^{m}=a^{m} b^{m} \\
& \left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \\
& \frac{a^{m}}{a^{n}}=a^{m-n} \\
& \frac{x^{6}}{x^{2}}=\frac{x \cdot x-x \cdot x-x-x}{x \cdot x}=x^{4} \\
& a^{\frac{m}{n}}=\sqrt[n]{a^{m}} \\
& \sqrt{5} \times \sqrt{5}=\sqrt{25}=5 \\
& 5^{1 / 2}=\sqrt[2]{5^{1}} 5^{1 / 2} \times 5^{1 / 2}=5^{1 / 2+1 / 2}=5^{1 / 2} \\
& \text { We can see that } \sqrt{S} \text { and } S^{1 / 2} \text { are the } \\
& \text { Exponential equations are ones where the variable is in the exponent. We can solve these } \\
& \text { equations by } \\
& \text { - Writing the left side of the equation and the right side of the equation so they each } \\
& \text { use the same base. } \\
& \text { - Then, we use the fact that if } a^{x}=a^{y} \text { it forces } x=y \text {, to finish solving the } \\
& \text { equation. }
\end{aligned}
$$

1) mike both side)

$$
\begin{aligned}
& \text { mike both side) } \\
& \text { of the equation some bale } 12 \text {-Unit } 3 \\
& \text { use Page } 6
\end{aligned}
$$

Example

$$
\begin{aligned}
8^{4 x-1} & =\left(\frac{1}{2^{1}}\right)^{x+5} \\
\left(2^{3}\right)^{x x-1} & =\left(2^{-1}\right)^{x+5} \\
2^{12 x-3} & =2^{-x-5} \\
\Rightarrow \quad 12 x-3 & =-x-5
\end{aligned}
$$

2) Sot the exponent equal

To Try

$$
\begin{aligned}
12 x-3 & =-x-5 \\
+x & +x \\
13 x-3 & =-5 \\
+3 & +3 \\
\frac{13 x}{13} & =\frac{-2}{13} \\
x & =-\frac{2}{13}
\end{aligned}
$$

1. Rewrite the expressions so they have the same base, then solve the equation.
a) $\left(\frac{1}{25}\right)^{4 x}=(125)^{3 x+2}$

$$
\begin{array}{ll}
\left(25^{-1}\right)^{4 x}=(125)^{3 x+2} \\
{\left[\left(5^{2}\right)^{-1}\right]_{-8 x}^{4 x}} & =\left(5^{3}\right)^{3 x+2} \\
5^{-8 x+6} & =5^{9 x+9 x} \\
\Rightarrow-8 x & =9 x+6
\end{array} \quad \begin{array}{ll}
-8 x=9 x \\
-9 x
\end{array}, \begin{array}{ll}
-17 x & \frac{-17}{-17}
\end{array}
$$

$$
\text { b) } \begin{aligned}
&(8)^{2 x+7}=16^{4 x+2} \\
&\left(2^{2 x+7}\right.=\left(2^{4}\right)^{4 x+2} \\
& 2^{6 x+21}=2^{16 x+8}
\end{aligned}
$$

c) $\quad 16^{3 x}=8^{3 x-1} 64^{x}$

$$
\begin{aligned}
& \left(2^{4}\right)^{3 x}=\left(2^{3}\right)^{3 x-1}\left(2^{6}\right)^{x} \\
& 2^{12 x}=2^{9 x-3} 2^{6 x} \\
& 2^{12 x}=2^{9 x-3+6 x} \\
& \Rightarrow 2^{12 x}=2_{-15 x-3}^{15 x-3}
\end{aligned}
$$

$$
\frac{-3 x}{-3}=\frac{-3}{-3}
$$

$$
\begin{aligned}
6 x+21 & =16 x+8 \\
-16 x & -16 x \\
-10 x+21 & =8 \\
-21 & -21 \\
\frac{-10 x}{-10} & =\frac{-13}{-10}
\end{aligned} \quad x=\frac{13}{10}
$$

2. For how long does one need to invest $\$ 2000$ in an account that ears 6.1% mounded quarterly, before it increases in value to $\$ 2500$? Round answer to the nearest quarter of a year.

$$
A=P(1+i)^{n}
$$

$P=$ principal amount deposited
$i=$ interest rate per compounding period, in decimal form
$n=$ number of compounding periods

$$
\text { To solve either, } \mid x=14.744 \pm 15
$$

$$
\begin{aligned}
& \frac{2500}{2000}=\frac{2000}{2060}\left(1+\frac{0.061}{4}\right) \\
& 1.25=(1.01525)^{n} \\
& y_{1}=1.25 \\
& y_{2}=1.01525 \wedge x
\end{aligned} \quad x=14.744
$$

To solve either 1) guess a check 2) solve graphically
3. The population of a tow triples every 6 years. If 4000 people lived there in 2009 , how many will be in the town 2030? (Round down to the nearest whole person.)

$$
\begin{aligned}
A & =4000(3)^{\frac{21}{6}} \frac{2030}{2(\text { gen }} \\
& =187061 \text { peoph }
\end{aligned}
$$

(7.3) TB p 364: 1, 2, 3ac, 4, Sac, 7aceg, 9-13

Chapter 7 in-class practice - work in groups

Chapter 8

In a group:

Let's start with a SUPER FUN puzzle!

Take a guess at what these
statements are saying:

$$
2^{3}=8
$$

Now see if you can fill in the blanks:

$$
\begin{aligned}
& \text { power }_{2}(16)=4 \quad \operatorname{power}_{10}\left(\frac{1}{1000}\right)=-3 \\
& \begin{array}{lr}
\text { power }_{10}\left(\frac{1}{1000}\right)=-3 & 10 ?=\frac{1}{1000} \\
\text { ? } & 10^{?}=\frac{1}{10^{3}}
\end{array} \\
& \begin{array}{lr}
\operatorname{power}_{10}\left(\frac{1}{1000}\right)=-3 & 10=\frac{1}{1000} \\
\text { power }_{\text {_ }}(49)=2 & 10=\frac{1}{10^{3}}
\end{array} \\
& \begin{array}{lr}
\operatorname{power}_{10}\left(\frac{1}{1000}\right)=-3 & 10=\frac{1}{1000} \\
\text { power }_{\text {_ }}(49)=2 & 10=\frac{1}{10^{3}}
\end{array} \\
& \text { power }_{5}(625)=4 \\
& \operatorname{power}_{16}(64)=\frac{3}{2} \\
& 2^{-1}=\frac{1}{2} \\
& \square^{2}=49 \\
& 16^{3 / 2}=\sqrt[2]{16^{3}} \\
& =(\sqrt[2]{16})^{3} \\
& \begin{array}{l}
=(4)^{3} \\
=64
\end{array}
\end{aligned}
$$

TB p 370

Logarithmic Functions

Logarithms were developed over 400 years ago, and they still have numerous applications in the modern world. Logarithms allow you to solve any exponential equation. Logarithmic scales use manageable numbers to represent quantities in science that vary over vast ranges, such as the energy of an earthquake or the pH of a solution. Logarithmic spirals model the spiral arms of a galaxy, the curve of animal horns, the shape of a snail, the growth of certain plants, the arms of a hurricane, and the approach of a hawk to its prey.

In this chapter, you will learn what logarithms are, how to represent them, and how to use them to model situations and solve problems.

Chapter 8: Logarithmic Functions

8.1 Understanding Logarithms

A logarithm tells how many copies of one number we need to multiply together, to create a different number.

For example:

How many 4's do we have to multiply together to get 64 ?
$4 \times 4 \times 4=64$, which shows we have to multiply 3 of the " 4 's" to produce 64 This tells us the logarithm is 3 .

A logarithm tells us how many copies of the BASE we need to multiply together, to create the ARGUMENT - in other words, the logarithm is the exponent we raise the base to, in order to produce the argument th what exponent equals 16?"
Try These

1. $\log _{4}(16)=2$
I know this is right, because
$4^{2}=16$ $4^{2}=16$
$\left(a^{7}\right)=7$
2. $\log _{3}(27)=3$
$3^{3}=27$
3. $\log _{2}\left(2^{-3}\right)=-3$ (a horse)
4. $\begin{aligned} \log _{5}\left(\frac{1}{25}\right) & =\log _{5}\left(\frac{1}{5^{2}}\right)\left(8 \cdot \log _{3} 0=\text { does not exist }\right. \\ & =\log _{5}\left(5^{-2}\right)=-2\end{aligned}$

$$
=\log _{5}\left(5^{-2}\right)=-2
$$

10. $\log _{6}(\sqrt[2]{6})=\log _{6} 6^{1 / 2}$
11. $\log _{2}\left(\sqrt[3]{2^{4}}\right)=\log _{2}\left(2^{4 / 3}\right)$
$=\frac{1}{2}$
$=\frac{4}{3}$
12. $\log _{8}(1)=0$
(become: $8^{\circ}=1$)

For a logarithm to make sense, we need the argument and the base to obey these restrictions:

$$
\text { argument }>0 \quad \text { base }>0, \text { base } \neq 1
$$

6. $\log _{1} 7=$ does not exist

$$
1^{?}=7
$$

9. $\log _{2}(-4)=$ does not exist

TB p 374

Evaluate.

a) $\log _{2} 32=5$
b) $\log _{9} \sqrt[5]{81}=\log _{9} \sqrt[5]{9^{2}}=\log _{9} 9^{2 / 5}=\frac{2}{5}$
c) $\log _{10} 1000000=6$
d) $\log _{3}(9 \sqrt{3})$

$$
\begin{aligned}
& =\log _{3}\left(3^{2} 3^{1 / 2}\right) \\
& =\log _{3}\left(3^{2^{2 / 2}}\right) \\
& =2^{1 / 2} \text { or } 2.5 \\
& \text { or } \frac{5}{2}
\end{aligned}
$$

Notation

\log base $\mathbf{1 0}$ is called COMMON $\log \quad \log$ base \boldsymbol{e} is called NATURAL \log $\log _{10} x$ is written $\log x \quad \log _{e} x$ is written $\ln x$

The number e is a very important irrational number. Its decimal expansion starts out: $e \approx 2.7182818284590452353602874713 \ldots$
https://www.popularmechanics.com/science/math/a24383/mathematical-constant-e/

Changing Form

https://www.popularmechanics.com/science/math/a24383/mathematical-constant-e/
Exponents and logarithm are closely connected. Look these two equations:

Both equations show the relationship between the numbers 4,3 and 64 . We need to know how to change equations from one form to the other, as in some questions one form is better than the other.

To Try

1. Change form.
a) $\log _{6} 216=3$
b) $\log _{p} q=r$
c) $\log _{10} 000=3$

$$
6^{3}=216
$$

$$
p^{r}=q
$$

$$
10^{3}=1000
$$

d) $7^{2}=49$
e) $5^{x+y}=a$
f) $49^{1 / 2}=7$
$\log _{7} 49=2$
$\log _{5} a=x+y$
$\log _{49} 7=1 / 2$
2. Solve for x.
a) $\log _{2}(x-1)=3$

$$
\text { Change form: } \begin{aligned}
\log _{2}(x-1)=3 & =x-1 \\
8 & =x-1 \\
& x=9
\end{aligned}
$$

b) $\log _{6} x=-2$

$$
\begin{aligned}
& 6^{-2}=x \\
& x=\frac{1}{6^{2}}=\frac{1}{36}
\end{aligned}
$$

c) $\log _{x} 8=3$

$$
\begin{aligned}
& x^{3}=8 \\
& x=2
\end{aligned}
$$

e) $\log _{2}\left(\log _{9} x\right)=-1$
d) $\ln _{e} x=2$
$e^{2}=x, x=7.39^{1}$

f) $4^{\log _{4} 7}=x$

$$
\log _{4} x=\log _{4} 7
$$

$$
4^{3}=x
$$

$$
x=7
$$

$$
\log _{4} x=3
$$

$$
\frac{1}{2}=\log _{9} x
$$

$\stackrel{O R}{=} \log _{q} x=\frac{1}{2} \quad 9^{1 / 2}=x, x=\sqrt{9}$

Determine the value of x.
a) $\log _{4} x=-2$
b) $\log _{16} x=-\frac{1}{4}$
c) $\log _{x} 9=\frac{2}{3}$

$$
\text { c) } \log _{x} 9=\frac{-}{3}
$$

$$
\begin{aligned}
4^{-2} & =x \\
\frac{1}{4^{2}} & =x \\
x & =\frac{1}{16}
\end{aligned}
$$

$$
\quad \frac{1}{4^{2}}=x
$$

Coming up:

- NO CLASS on Thursday, Nov 10 - see you on Tuesday, Nov 15!
- Tuesday, Nov 15

Chapter 7 Hand-in due
Chapter 7 Test, includes one trig question

Practice

(7.3) TB p 364: 1, 2, 3ac, 4, 5ac, 7aceg, 9-13
(8.1) TB p 380: 1-4, 8, 10, 12-15

Optional worksheet: Chapter 7 Review Worksheet, on website

Short video clip about logarithms:

https://www.youtube.com/watch?v=zzu2POfYvoY starting at 0:14

