Tonight's Class:

- Working through sections 6.1, 6.2
- Non-Permissible Values
- Multiplying and Dividing Rational Expressions
- Questions from Chapter 5 hand-in assignment?
- Chapter 5 Test (Trigonometry) next class
6.1 Equivalent Rational Expressions and NPVs

Focus: Determine NPVs and find equivalent forms of rational expressions
rational number - if written as decimals,
 they terminate or go into a repenting patter:
with as
fractions
0.2
-13.25
0.719
$0.719719719719 \ldots$
rational expressions - fractions with polynomials in the numerator and the devominitur
example: $\frac{5 x+4}{x^{2}-9}$

$$
f(x)=\frac{p(x)}{q(x)}
$$

WT page 521
Example 1 Determining Non-Permissible Values (NPVs)
Determine the non-permissible values for each rational expression. or
a) $\frac{x^{2}+2}{x^{2}-x-6}$
b) $\frac{x}{x^{2}+1}$
to figure out NPVs

1) Set denominator equal to 200
2) solve, to see what NPVs are
a) $\frac{x^{2}+2}{x^{2}-x-6}$

$$
\begin{aligned}
& x^{2}-x-6=0 \\
& \text { factor, to find } \\
& \text { the } x \text {-valves } \\
& x^{2}-3 x+2 x-6=0 \\
& \left.\begin{array}{l}
\text { ard multiply to }-6 \text {, } \\
\text { and add to }-1
\end{array}\right] \\
& x(x-3)+2(x-3)=0 \\
& -3,+2 \\
& (x-3)(x+2)=0 \\
& \begin{array}{l}
x-3=0 \\
+3
\end{array} \\
& x+2=0 \\
& x=3 \\
& x=-2
\end{aligned}
$$

$$
\begin{aligned}
\text { NPR: } & x \neq 3 \\
& x \neq-2
\end{aligned}
$$

b) $\frac{x}{x^{2}+1}$

1) Set $\operatorname{denom}=0$
2) solve for x to get NPUs
3)

$$
\begin{aligned}
x^{2}+1 & =0 \\
-1 & =-1 \\
\sqrt{x^{2}} & =\sqrt{-1} \\
x & =\text { no solution }
\end{aligned}
$$

2) there are NO NPVs for this expression.

Unit 3 - Trig and Rationals Page 2
2) there are NO NPVs for this expression.

Ty p 521 cyu \#1

Check Your Understanding

1. Determine the non-permissible

$$
\text { 1) devon }=0
$$ values for each rational expression.

a) $\frac{5 x}{x^{2}-9}$
b) $\frac{3 x+2}{x^{2}-8 x+16}$

$$
7
$$

a) $\frac{5 x}{x^{2}-9}$
1)

$$
\text { set denom =0 } \left.\begin{array}{r}
x^{2}-9=0 \\
+9 \\
+9 \\
\sqrt{x^{2}} \pm \sqrt{9} \\
x= \pm 3
\end{array}\right\}
$$

b)

$$
\begin{gathered}
x^{2}-8 x+16=0 \\
x^{2}-4 x-4 x+16=0 \\
x(x-4)-4(x-4)=0 \\
(x-4)(x-4)=0 \quad-4, \\
x+4 \\
x-4=0 \\
x=4 \\
x-4=0 \\
x^{2}-9=0
\end{gathered} \quad \begin{gathered}
\text { ult } \\
16 \\
\text { add } \\
-8
\end{gathered}
$$

$$
\begin{array}{lr}
(x-3)(x+3)=0 \\
x-3=0 & x+3=0 \\
x=3 & x=-3
\end{array}
$$

$$
x^{2}+0 x-9=0
$$

mult-9

$$
x^{2}+3 x-3 x-9=0
$$

$$
x(x+3)-3(x+3)=0
$$

$$
(x+3)(x-3)=0
$$

WT page 522
doesr't look the but is sask, both the "worth the "Mme"
Example 2
Writing Equivalent Forms of a Rational Expression

Use multiplication and division to write two equivalent forms of the rational expression $\frac{3(x+2)}{(x+2)(x-4)}$.

1) Simplify, reducing
the expression:

$$
\frac{3(x+2)}{(x+2)(x-4)}
$$

Before we simplify, we should list any NPVS.
NoUS $X \neq-2$

$$
(x+2)(x-4)=0
$$

Unit 3 - Trig and Rationals Page 3

$$
\text { NeVI } X \neq-2
$$

$$
x \neq 4
$$

NPVS always cone from the orisinal form of the expression.
2) changing to a differat form to get a common denominator with another expression:
say we wanted to add

$$
\begin{array}{ll}
\frac{3(x+2)}{(x+2)(x-4)} & \begin{array}{l}
\text { Say we wanted to ad } \\
\text { if to this expression: } \\
\frac{5 x}{x+1}
\end{array} \\
\frac{3(x+2)}{(x+2)(x-4)} \cdot \frac{(x+1)}{(x+1)}+\frac{5 x}{(x+1)} \cdot \frac{(x-4)}{(x-4)} \cdot \frac{(x+2)}{(x+2)}
\end{array}
$$

Careful- don't cancel individual terms!!
$\begin{aligned} & \text { This } \\ & \text { is } \\ & \text { of: }\end{aligned} \frac{(x+4)}{(x+4)(x+5)}=\frac{1}{(x+5)}$

This	$x+4$	
is	$x+$	
Not	x	
akan!	x	5
no!!	$\frac{4}{5}$	
no!!		mol!
		noIl

$$
\begin{aligned}
& (x+2)(x-4)=0 \\
& \begin{array}{rlr}
x+2 & =0 & x-4 \\
x & =0 \\
x & =-2 & x
\end{array} \\
& \frac{3(x+2)}{(x+2)(x-4)}=\left(\frac{3}{x-4}, \begin{array}{l}
\text { sher } \\
x \neq-2 \\
x \neq 4
\end{array}\right)
\end{aligned}
$$

EVERY TIME YOU DO THIS:

$$
\begin{aligned}
f(x) & =\frac{x^{2}+2 x+1}{x^{2}+3} \\
& =\frac{2 x+1}{3}
\end{aligned}
$$

$$
\operatorname{don}_{\text {do }}
$$

A KITTEN DIES.

WT page 523

Example 3
Simplifying Rational Expressions

Write each rational expression in simplest form.
a) $\frac{15 x^{2} y z^{3}}{20 x y z}$
b) $\frac{3 x^{2}-8 x}{2 x}$
c) $\frac{x^{2}+6 x+8}{x^{2}-4}$
d) $\frac{16-x^{2}}{2 x^{2}-11 x+12}$

1) factor the numenomindor (if puscible)
2) identify NPVS
3) reduce identical
a) $\frac{15 x^{2} y z^{3}}{20 x y z}$
4) no factoring to $d o$ factors.
5) NRVS: $\frac{2}{2} X=\frac{0}{2}$

$$
x \neq 0
$$

$$
\frac{x(3 x-8)}{2 x}=\frac{3 x-8}{2}
$$

c) $\frac{x^{2}+6 x+8}{x^{2}-4}$

1) factor

$$
\begin{aligned}
& \frac{x^{2}+4 x+2 x+8}{x(x+4)+2(x+4)} \\
& (x+4)(x+2)
\end{aligned}
$$

$$
\left.\begin{array}{ccc}
\text { mut th } & 8 \\
\text { add } & 6
\end{array}\right\} 4,2
$$

$$
\frac{(x+4)(x+2)}{(x+2)(x-2)}
$$

$$
x^{2}-4
$$

2) NPVS:

$$
\begin{aligned}
& x \neq-2 \\
& x \neq 2
\end{aligned}
$$

$$
\begin{aligned}
& (x+2)(x-2)=0 \\
& d \\
& x+2=0 \quad \text { x } \\
& x=-2 \quad x=0
\end{aligned}
$$

3) $\frac{(x+4)(x+2)}{(x+2)(x-2)}=\sqrt{\frac{x+4}{x-2}}$
d) $\frac{16-x^{2}}{2 x^{2}-11 x+12}$
4) factor top, fretter bottom

$$
\frac{16-x^{2}}{2 x^{2}-11 x+12}=\frac{(4+x)(4-x)}{(x-4)(2 x-3)}
$$

$$
\text { 2) } \begin{array}{rr}
N P V s \\
& x-4=0 \\
x \neq 4 \\
x \neq \frac{3}{2} &
\end{array}
$$

$$
\begin{aligned}
& 2 x-3=0 \\
&+3 \\
& \frac{2 x}{2}=\frac{3}{2} \\
& x=\frac{3}{2}
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
\frac{(4+x)(4-x)}{(x-4)(2 x-3)} & =\frac{(4+x)(4-x)}{-1(-x+4)(2 x-3)} \\
& =\frac{(4+x)(4-x)}{-1(4-x)(2 x-3)} \\
& =\frac{4+x}{-1(2 x-3)}
\end{aligned}
$$

$$
\frac{5}{-8} \text { or } \frac{-5}{8} \text { or }-\frac{5}{8}\left(\begin{array}{cc}
-1(2 x-3) \\
\frac{0 R}{-} & -\frac{(4+x)}{2 x-3} \text { oR }
\end{array} \frac{-4+x}{2 x-3}\right.
$$

**Super important to always factor FULLY before you try to get the NPVs or simplify.

- Check for common factors FIRST
- Then, see if you can factor even more completely, afterward

6.2 Multiplying and Dividing Rational Expressions

Focus: Multiply and divide rational expressions
remember, with fractions: $\quad \frac{2}{3} \times \frac{4}{7}=\frac{8}{21}$

$$
\frac{1}{2} \div \frac{3}{5}=\frac{1}{2} \times \frac{5}{3}
$$

$$
\begin{aligned}
& 5 \div \frac{1}{2}=5 \times \frac{2}{1}=10=\frac{5}{6} \\
& (2) 3410=9
\end{aligned}
$$

To multiply two rational expressions, multiply numerators and multiply denominators:

$$
\frac{A}{B} \cdot \frac{C}{D}=\frac{A \cdot C}{B \cdot D}
$$

It is often useful to factor the components of the rational expression so that we can cancel all common factors in the numerator and denominator.

WT page 532

Example 1 Multiplying Rational Expressions

Simplify each expression.
a) $\frac{c^{2}}{10} \cdot \frac{5 d}{2 c}$
b) $\frac{4 x(x+3)}{3(x-1)} \cdot \frac{5(x-1)}{2 x}$

1) factor, if
possible
2) NPVS
3) simplify
a) $\frac{c^{2}}{10} \cdot \frac{5 d}{2 c}=\frac{5 c^{2} d}{20 c}$
4) furebr-none
5) NPV $c \neq 0$
$=\frac{5 c^{2} d}{\frac{20 c}{4}}$
6) simplify

$$
=\frac{c^{2} d}{4 c}
$$

$$
=\frac{c d}{4}
$$

1) already factored
2) NPV $\begin{aligned} & x \neq 0 \\ & x \neq 1\end{aligned}$

$$
\begin{array}{r}
\frac{Z(x-1)}{\frac{\beta}{\beta}}=\frac{0}{3} \\
x-1=0 \\
+1 \\
x=1
\end{array}
$$

$$
=\frac{4 x(x+3)(5)}{6 x}
$$

$$
=\frac{20^{x^{2}} x(x+3)}{6 \frac{x^{2}}{x}}
$$

$$
\begin{aligned}
& \frac{6 \times 2}{x} \\
= & \frac{(10)(x)(x+3)}{(3)(x)} \\
= & \frac{10(x+3)}{3}
\end{aligned}
$$

Dividing Fractions

$$
\frac{3}{4} \quad \times \quad \frac{7}{2}=\frac{21}{8}
$$

To divide two rational expressions, multiply by the reciprocal of the divisor (ie., change division into multiplication by "flipping" the second fraction):

$$
\frac{A}{B} \div \frac{C}{D}=\frac{A}{B} \cdot \frac{D}{C}
$$

WT page 533

Example 2 Dividing Rational Expressions

Simplify each expression.
a) $\frac{5 n^{4}}{-2} \div \frac{(5 n)^{2}}{6}$

1) change to multiplication
question
b) $\frac{2(x+1)}{3 x} \div \frac{4(x+1)}{x(x-2)}$
2) factor everything
3) NpVs
4) simplify

$$
\text { a) } \begin{aligned}
& \frac{5 n^{4}}{-2} \div \frac{(5 n)^{2}}{6} \\
= & \frac{5 n^{4}}{-2} \cdot \frac{6}{(5 n)^{2}} \\
= & \frac{5 n^{4}}{-2 \div 2} \cdot \frac{6 \div^{2}}{25 n^{2}}
\end{aligned}
$$

1) we flipped the $2^{n d}$ expressing
2) no fretoris
3) NPVS
$n \neq 0$
4) Simplify

- reduce first, + then multiples if

$$
\begin{aligned}
& =\frac{\ln { }^{4}}{-1} \cdot \frac{3}{5 n^{2}} \quad \begin{array}{r}
\text { Yo would like } \\
\text { tu keep the } \\
\text { numbs } \text { bid } \\
\text { Smaller. }
\end{array} \\
& =\frac{3 n^{4}}{-5 n^{2}} \begin{array}{ll}
\frac{3 n^{2}}{-5} \left\lvert\, \quad \begin{array}{ll}
\frac{5 n^{4}}{-2} \cdot \frac{6}{25 n^{2}} & =\frac{30 n^{4}}{-50 n^{2}} \\
\text { or, you com } \\
\text { muthps fist } \\
\text { o thu reduce. }
\end{array}\right. & =\frac{3 n^{4}}{-5 n^{2}} \\
=\frac{3 n^{2}}{-5}
\end{array}
\end{aligned}
$$

For next class

- Work on the worktext questions for 6.1-6.2
- Prepare for the Chapter 5 Test
- Complete the Chapter 5 hand-in

