Tonight's Class:

- Chapter 7 Test
- 8.2 Transforming Log Graphs
- 8.3 Logarithm Laws

Please:

1. Make sure your name is on your Chapter 7 Hand-in and give it to me.
2. Put away materials, except for your calculator \& something to write with.
3. On your test, write clearly and show all necessary steps. When you are finished, please look over your test before handing it in.
4. While other people are still finishing, respect them by being quiet.

Review - work on Log Practice worksheet, \#1-4 only.

Pre-Calc 12 - Unit 3 Page 10

Graphing an Exponential Function and its Inverse
a) Fill in the table below, and sketch the graph of the exponential function $y=2^{x}$.

$$
\begin{array}{|l|l|}
\hline x & y \\
\hline-2 & 2^{-2} \\
\hline-1 & 2^{-1} \\
\hline 0 & 2^{0} \\
\hline 1 & 2^{1} \\
\hline 2 & 2^{2}=\frac{1}{2^{2}}=\frac{1}{2} \\
\hline
\end{array}
$$

b) Identify the following: $\begin{array}{ll}\text { domain } & \{x \mid x \in \mathbb{R}\} \\ \text { range } & \{y \mid y>0, y\end{array}$
asymptote equation
x-intercept, if it exists $y=0$
y-intercept, if it exists
c) Give the equation of the inverse of $y=2^{x}$. Inverse's equation is: $X=2^{y}$
d) For the equation of the inverse that you found in part c), complete the table at right and sketch the graph on the grid above.
e) For the inverse graph, what are its:

f) Rewrite the inverse equation from part c) in logarithmic form: $\quad \log _{2} x=y$

Conclusions: $y=a^{x}$ and $y=\log _{a} x$ ard INVERSES

$$
\log _{a}\left(a^{x}\right)=X \quad a^{\log _{a} x}=X
$$

(because $3^{2}=9$)
equals the exponent we NEED, in order to charge the bax, 3_{5} into the assume, what is 9
$\log _{a} x=$? the exponent NEED, to chase the bx, a, int the argument, which is x.

Remember
Exponential graphs have two basic shapes.

8.2 Transformations of Logarithmic Functions

The graphs of logarithmic functions can be grouped into two categories:

- if the logarithm's base is larger than one, the graph is increasing
- if the logarithm's base is between zero and one, the graph is decreasing

What characteristics are the same for all untransformed logarithmic graphs?

$$
\begin{array}{llll}
\text { domain: }\{x \mid x>0, x \in \mathbb{R}\} & x \text {-mterapt } \quad(1,0) \\
\text { rage: }\{y \mid y \in \mathbb{R}\} & \text { vertical asymptet: } \quad x=0
\end{array}
$$

Predict what will happen to the graph ff $y=\log _{3} x$ when each of the following changes is made to the equation:

$$
\begin{aligned}
& \begin{array}{l}
y=\log _{3}(x)-5 \\
y=-4 \log _{3} x \\
y E \text { by } 4, \text { reflect } 4 \text { coon } x \text {-axis }
\end{array} \quad y=\log _{3}(x-5) \text { right } 5 \\
& y=\log _{3}\left(-\frac{2}{5}(x+3)\right) \quad H E 5 / 2 \text {, reflect cor, } y \text {-axis, left } 3
\end{aligned}
$$

If $b<0$ then there is a reflection over the y-axis (horizontal reflection) If $a<0$ then there is a reflection over the x-axis (vertical reflection)

Example, TB p 387:

Your Turn

a) Use transformations to sketch the graph of the function $y=2 \log _{3}(-x+1)$.
b) Identify the following characteristics.
i) the equation of the asymptote
ii) the domain and range
iii) the y-intercept, if it exists
iv) the x-intercept, if it exists

$$
\begin{aligned}
& \text { Domain } \\
& \{x \mid x<1, x \in \mathbb{R}\} \\
& \text { Vertical asymptote equation } \\
& x=1
\end{aligned}
$$

Log Practice worksheet, \#6 only

Remember, all untransformed log graphs have

- vertical asymptote at $x=0$
- domain $\mathrm{x}>0$

When a log equation is transformed, here's the an easy way to find its domain and vertical asymptote equation:

To find the domain of a logarithmic graph, either:

- Use the fact that any untransformed log graph has domain $\mathrm{x}>0$ and apply the equation's transformations to find the new domain.
- Set ARGUMENT >0, and do the algebra needed to isolate the x.

The vertical asymptote equation uses the same number found above, and is in the form $\mathrm{x}=$ number.

Suppose
 we had this:

$$
1 \quad(-7 v+18)+3
$$

Suppose we had this:

$$
\begin{aligned}
& y=\log _{4}(-2 x+18)+3 \\
& -2 x+18>0
\end{aligned}
$$

Example:

$$
y=\log _{2}(x+4)-7
$$

x-intupt, let $y=0$

$$
\begin{aligned}
& \left.0=\log _{2}(x+4)-7\right\} \text { isolk } \log ^{\text {term }} \\
& 7=\log _{2}(x+4) \\
& \left.2^{7}=x+4 \quad\right\} \text { change form } \\
& 128=x+4 \quad(124,0) \\
& x=124
\end{aligned}
$$

$$
\begin{gathered}
y=\log _{2}(x+4)-7 \\
y=\log _{2}(0+4)-7 \\
y=\log _{2}(4)-7 \\
y=2-7
\end{gathered}
$$

$$
y=->
$$

try these

For each of the following find:

Domain

Range
Asymptote equation
x-intercept
y-intercept

1. $y=\log _{2}(x-7)-5$
$1 . y=\log _{2}(x-7)-5$
2. $y=\log _{3}(5 x+3)-4$

For each of the following find:

- Domain

Range
Asymptote equation
x-intercept
y-intercept

1. $y=\log _{2}(x-7)-5$

domain: $\begin{aligned} & x-7>0 \\ & |x| x>7\end{aligned}$ $\{x \mid x>7, x \in \mathbb{R}\}$
range: $\{y \mid y \in \mathbb{R}\}$
asymptote equation: $x=7$

$$
\begin{array}{ll}
x \text {-intercept: } \underset{\text { ts }}{0}=\log _{2}(x-7) & -5 \\
+5
\end{array}
$$

$$
5=\log _{2}(x-7)
$$

$$
\begin{aligned}
& 5=\log _{2}(x-7) \quad(39,0) \\
& \log _{2}(x-7)=5
\end{aligned}
$$

$$
2^{5}=x-7
$$

$$
32=x-7
$$

y-intreept :

$$
\begin{aligned}
& y=\log _{2}(0-7)-5 \\
& y=\log _{2}(-7)-5 \\
& \text { no } y \text {-intropt }
\end{aligned}
$$

2. $y=\log _{3}(5 x+3)-4$

$$
\begin{aligned}
& \text { domain: } \quad 5 x+3>0 \\
& \begin{array}{c}
5 x>-3 \\
\text { change: } x \in \mathbb{R}, \frac{3}{5} \\
\text { asymp: } x=-\frac{3}{5}
\end{array} \\
& x \text {-int: } \\
& 0=\log _{3}(5 x+3) \\
& 4=\log _{3}(5 x+3 \\
& 3^{4}=5 x+3 \\
& 81=5 x+3 \\
& \frac{78}{5}=\frac{5 x}{5} \\
& x=\frac{28}{5}=1 \\
& y \text {-int: } y=\log _{3}(5 x+3)-4 \\
& y=\log _{3}(3)-4 \\
& y=1-4 \\
& y=-3 \quad(0,-3)
\end{aligned}
$$

Logarithms - Investigation

Part I:

Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(16)+\log _{4}(4)=2+1=3 \quad$ This answer, 3 , is equal to $\log _{4}(64)$ We've shown that: $\quad \log _{4}(16)+\log _{4}(4)=\log _{4}(64)$

1) $\log _{2}(8)+\log _{2}(4)=$ \qquad $\log _{2}(\quad)$
2) $\log _{3}(9)+\log _{3}(81)=$ $\log _{3}(\quad)$
(el)
3) $\log _{3}\left(\frac{1}{9}\right)+\log _{3}(81)=\square \quad \log _{3}(\quad)$
4) $\log _{5}(5)+\log _{5}(1)=\square \quad \log _{5}(\quad)$
5) What pattern seems to hold? Write a rule
$\log _{c} X+\log _{c} Y=\log _{c}(\quad)$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it.
6) $\log _{6} 12+\log _{6} 3$
7) $\log 250+\log 40$
8) $\log _{8}\left(\frac{3}{64}\right)+\log _{8}\left(\frac{1}{3}\right)$

Part II:

Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(64)-\log _{4}(16)=3-2=1 \quad$ This answer, 1 , is equal to $\log _{4}(4)$ We've shown that: $\quad \log _{4}(64)-\log _{4}(16)=\log _{4}(4)$
9) $\log _{5} 625-\log _{5} 5=$ \qquad $\log _{5}(\quad)$
10) $\log _{6} 36-\log _{6} 6=\square \quad \log _{6}(\quad)$
11) $\log _{3} 9-\log _{3} 1=\square \quad \log _{3}($
12) $\log _{2} 16-\log _{2} 32=\square \quad \log _{2}(\quad)$
13) What pattern seems to hold? Write a rule:

$$
\log _{c} X-\log _{c} Y=\log _{c}(\quad)
$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it.
14) $\log _{6} 72-\log _{6} 2$
15) $\log 12-\log 0.12$
16) $\log _{12} 2-\log _{12} 288$

Hand-in Worksheet: Chapter 8 Hand-in
 Should be okay to do \#1-7 right now.

Practice

(8.2) TB p 389: 1, 2, 4c, 5c, 6, 7, 8ab, 9b, 13
(8.3) TB p 400: 1-5, 8-10
(8.4) TB p 412: 1, 3, 4ac, 5, 6, 8abd

Lots of detailed, careful solutions of logarithmic equations found here:
https://www.chilimath.com/lessons/advanced-algebra/solving-logarithmic-equations/

Unit 3 Test next Tuesday, Nov 22

Study Suggestions:

Work on Chapter 8 Hand-in (\#1-7, for now)

- Complete optional Worksheets (posted on website):
- Unit 3 Solving Equations Practice
- More Solving Practice (Log \& Exponential Equations)
- Chapter 8 Review
- Equation solving:

○ TB p 412: 1, 2ac, 3, 4ac, 5, 6, 7acd, 8abd, 13, 16

