Plan For Todays

1. Question about anything from last class? 8.3-8.4
2. Finish Chapter 8: Logarithmic Functions
\checkmark 8.1: Understanding Logarithms
\checkmark 8.2: Transformations of Logarithmic Functions
\checkmark 8.3: Laws of Logarithms

* 8.4: Logarithmic \& Exponential Functions

5. Work on practice questions from Textbook Page 412:
\#1, 2ac, 3, 4ac, 5, 6, 7acd, 8abd, 13, 15, 16, 17

Solve: $5^{x}=2^{x+2}$
 1. Take logarithms of both sides
 ${ }^{-} \log \left(5^{x}\right)=\log \left(2^{x+2}\right)$

2. Bring down the exponent
$x \log 5=(x+2) \log 2$

Plan Going Forwards

1. Finish working through extra practice \& textbook questions from 8.4 and finish working on the Ch. 8 Assignment.

CHAPTER 8 ASSIBNMENT DUE ON MONDAY, JUNE TZTH

2. You will start ch9 (9.1-9.2) tomorrow. Ch9 will be covered next Monday after the test and we will plan to finish it on Tuesday. Last topic 10 will start next Wednesday.

TEST 6 ON B.2-9. 2 ON MONDAF. JUNE T2TH TEST 7 ON 9.3-10. 4 ON MONDAY JUNE TRTH
CHAPTER 9 ASSIGNMENT DUE ON THURSDAY. JUNE $15 T H$ TOPLC 10 (G) ASSIGNMENT DUE ON TUESDAY. JUNE 2OTH

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca

SOLUNNG LOG E@UATIONS:

1. Use the log laws to condense each side of the $=$ sign to a single log or number.

$$
\log _{a} b=\log _{a} c \quad O R \quad \log _{a} b=C
$$

2. A) If one log on each side, cancel the logs.

$$
\begin{aligned}
\log _{a} b & =\log _{a} c \\
\operatorname{tog}_{a} b & =\log _{a} c \\
b & =c
\end{aligned}
$$

B) If log on one side and a number on the other side, BOOT the log to change to exponential form.

$$
\begin{gathered}
\log _{a}=C \\
a^{c}=b
\end{gathered}
$$

3. Solve the equation.

4. Write restrictions or do a check to determine if there are any extraneous roots.

Solving a logarithmic equation by changing to exponential form = BOOT THE LOG

Solve the log equation by combining to a common of base:

Recall solving an exponential by changing to a common base. You can then make the exponents equal and solve.

Exponential Equation with Different Bases

1. Isolate the exponential part of the equation. If there are two exponential parts put one on each side of the equation.
2. Take the logarithm of each side of the equation.
3. Apply power property to rewrite the exponent.
4. Solve for the variable.

Example:
$3^{x}-1=4$

$$
3^{x}=5
$$

$\log 3^{x}=\log 5$
$x \log 3=\log 5$

$$
x=\frac{\log 5}{\log 3}
$$

Example:

$$
\begin{aligned}
5^{x-1}-2^{x} & =0 \\
5^{x-1} & =2^{x} \\
\log 5^{x-1} & =\log 2^{x} \\
(x-1) \log 5 & =x \log 2 \\
x \log 5-\log 5 & =x \log 2 \\
x \log 5-x \log 2 & =\log 5 \\
x(\log 5-\log 2) & =\log 5 \\
x & =\frac{\log 5}{\log 5-\log 2}
\end{aligned}
$$

Solve: $2^{x+4}=8^{x}$

1. Write the equation with the same bases

$$
2^{x+4}=\left(2^{3}\right)^{x} \quad 2^{x+4}=2^{3 x}
$$

2. Set the exponents equal to each other

$$
x+4=3 \mathrm{x}
$$

3. Solve the resulting equation for x

Solve: $5^{x}=13$

1. Take logs of both sides

$$
\log \left(5^{x}\right)=\log (13)
$$

2. Bring down the power in front of the log

$$
x \log (5)=\log (13)
$$

3. Solve the resulting equation for x

$$
x=\frac{\log (13)}{\log (5)}=1.59
$$

What if you can't get a common base? Log both side and use the power law to solve.

SOLTNNG EXPONENTLAL EQUATIONS WUTH LOGS:

1. Simplify equation by trying to get a single base on both sides of the equal sign.

$$
M^{a+b}=N^{c+d}
$$

Recall: if there is a single common base on each side of the $=$ sign, cancel the bases and make the exponents equal to solve.

$$
\begin{gathered}
M^{a+b}=M^{c+d} \\
M^{a+b}=M^{c+d} \\
a+b=c+d
\end{gathered}
$$

2. If you cannot get a common base, take the log of both sides.

$$
\log M^{a+b}=\log N^{c+d}
$$

3. Use the power law to bring the exponent to the front of the log.

$$
\begin{aligned}
\log M^{a+b} & =\log N^{c+d} \\
(a+b) \log M & =(c+d) \log N
\end{aligned}
$$

4. Expand the brackets by distribution, collect the common variables to

 one side, factor and solve for x.$$
\begin{aligned}
(a+b)^{2} \log M & =(c+\widehat{d}) \log N \\
a \log M+b \log M & =c \log N+d \log N
\end{aligned}
$$

Solve: $3^{2 x}=0.51$

1. Take logs of both sides

$$
\log \left(3^{2 x}\right)=\log (0.51)
$$

2. Bring down the power in front of the log

$$
2 x \log (3)=\log (0.51)
$$

3. Solve the resulting equation for x

$$
x=\frac{\log (0.51)}{2 \log (3)}=-0.306
$$

(un) Solve: | 5^{x} | $=2^{x+2}$ | | |
| ---: | :--- | ---: | :--- |
| $\log \left(5^{x}\right)$ | $=\log \left(2^{x+2}\right)$ | | 1. Take logarithms of both sides |
| $x \log 5$ | $=(x+2) \log 2$ | | 2. Bring down the exponent |
| $x \log 5$ | $=x \log 2+2 \log 2$ | | 3. Expand and collect x terms |
| $x \log 5-x \log 2$ | $=2 \log 2$ | | |
| $x(\log 5-\log 2)$ | $=2 \log 2$ | 4. Factorise and solve for x | |
| x | $=\frac{2 \log 2}{(\log 5-\log 2)}=1.51$ | | |
| | | | |

Your Turn

Solve.

$$
\begin{aligned}
& \text { a) } \log _{7} x+\log _{7} 4=\log _{7} 12 \\
& \text { b) } \log _{2}(x-6)=3-\log _{2}(x-4) \\
& \text { c) } \log _{3}\left(x^{2}-8 x\right)^{5}=10
\end{aligned}
$$

Your Turn p. 409

Solve. Round answers to two decimal places.
a) $2^{x}=2500$
b) $5^{x-3}=1700$
C) $6^{3 x+1}=8^{x+3}$
a) $\log _{7} x+\log _{7} 4=\log _{7} 12$. (1) product law
(2) Power low \rightarrow mare

$$
\begin{aligned}
\log _{\pi}(4 x) & =\log _{\pi} 12 \quad \text { (2) cancel logs } \\
4 x & =12 \\
x & =3 \\
x & \ddots \\
x & \text { (3) Check. Restrictions } \\
\log _{3} x & \ddots
\end{aligned}
$$

 of log

$$
\begin{gathered}
3 x \log 6+\log 6=x \log 8+3 \log 8 \\
-x \log 8 \\
\longrightarrow
\end{gathered}
$$

c) $1896^{3 x+1}=188^{x+3} \quad$ (1) no common base bow $\quad 6+8 \therefore$ log both sides exponent
to front \& in a bracket
(1) move logs to
same side
THEN product

$$
3 \underset{\substack{x \\ x \log _{\uparrow} 6-x}}{x \log 8} 8=3 \log 8-\log 6
$$ law

$$
\log _{2}(x-6)+\log _{2}(x-4)=3
$$

$$
\log _{2}(x-6)(x-4)=3
$$

(2) Boot base tchange to exponential form (remorelog)

$$
\frac{x(3 \log 6-\log 8)}{(\vdots)}=\frac{3 \log 8-\log 6}{()}
$$

$$
(x-6)(x-4)=2^{3}
$$

$$
\begin{array}{r}
x^{2}-10 x+24=8 \\
-8
\end{array}
$$

$$
\begin{aligned}
& \longrightarrow \text { expand } \\
& \longrightarrow \text { collect liketerms }
\end{aligned}
$$

$$
x=\frac{3 \log 8-\log 6}{3 \log 6-\log 8} \text { exact } \rightarrow \text { Note: } \begin{aligned}
& \text { same answer } \\
& \text { if all signs } \\
& \text { ore apposite }
\end{aligned}
$$

$$
x^{2}-10 x+16=0
$$

$$
(x-8)(x-2)=0
$$

$$
x=8, \begin{aligned}
& x \neq 2 \\
& \text { extraneous. }
\end{aligned}
$$

\rightarrow make $=0$
\rightarrow factor or if not factorable, quad. formula
(4) Restrictions.

$$
\begin{array}{rlrl}
x-6 & >0 & x-4 & >0 \\
x & >6 & x & >4
\end{array}
$$

2.413
7. Determine the value of x. Round your answers to two decimal places.
a) $7^{2 x}=2^{x+3}$
b) $1.6^{x-4}=5^{3 x}$
c) $9^{2 x-1}=71^{x+2}$
d) $4\left(7^{x+2}\right)=9^{2 x-3}$
8. Solve for x.
a) $\log _{5}(x-18)-\log _{5} x=\log _{5} 7$
b) $\log _{2}(x-6)+\log _{2}(x-8)=3$
c) $2 \log _{4}(x+4)-\log _{4}(x+12)=1$
d) $\log _{3}(2 x-1)=2-\log _{3}(x+1)$
e) $\log _{2} \sqrt{x^{2}+4 x}=\frac{5}{2}$

1. Solving the following equations. Show restrictions and final answer in a box.
a) $\log _{2}(x-2)+\log _{2}(x-1)=2$
b) $\log _{3}(2 x+5)-\log _{3}(x+2)=\log _{3} 4$
2. Solving the following equations:
a) $3^{(x-1)}=9(27)^{(2-x)}$

C_21 Key and More Solving Practice

C_21 More Solving Practice with Solutions

Practice Solving Logarithmic \& Exponential Equations

1. Solve each equation for x.
a) $6^{3 x-6}=1$
b) $4^{8 x}=\frac{1}{16}$
c) $x^{4 / 5}=23$
d) $3^{x}=125$
e) $65=e^{7 x} \quad$ (e is a number, just like π is a number)
f) $7\left(2^{x}\right)=5^{x-2}$
g) $17^{x+4}=196^{3 x-2}$
2. Solve these logarithmic equations for x .
a) $\log _{3}(4 x-1)=2$
b) $\log _{5} 24-\log _{5} 2=\log _{5} 3 x$
c) $\log (8+2 x)=\log (7 x-2)$
d) $\log _{2 x} 64=2$
e) $\log _{x} 125=3$
f) $\log x+\log 12=\log 8$
f) $\log x+\log 12=\log 8$

Unit 3 - Exponents and Logs Page 7
3. Solve these logarithmic equations for x.
a) $x \log 26=\log 13$
b) $\log (5 x+4)=3$
c) $\log _{4} 188=x$
d) $\log 42=\log 14-\log x$
e) $\ln x-\ln 4=\ln 5$ ("ln" means $\log _{e}$)
f) $\ln x-\ln 4=5$ (This is NOT the same question as part e)
g) $\log _{2}\left(x^{2}+8\right)-\log _{2} 6=\log _{2} x$
h) $\log _{5}(3 x+1)+\log _{5}(x-3)=3$
i) $\log _{2}(x-2)+\log _{2} x=\log _{2} 3$
j) $\log _{5}(x-6)=1-\log _{5}(x-2)$
k) $2 \log _{3} x-\log _{3}(x+3)-3=0$

1) $\log _{5}(x+1)+\log _{5}(x-3)=1$

Solutions

1. Solve each equation for x.
a) $6^{3 x-6}=1$

$$
\begin{aligned}
6^{3 x-6} & =6^{0} \\
\Rightarrow 3 x-6 & =0 \\
3 x & =6 \\
x & =2
\end{aligned}
$$

b) $4^{8 x}=\frac{1}{16}$

$$
\begin{aligned}
4^{8 x} & =\frac{1}{4^{2}} \\
4^{8 x} & =4^{-2} \\
\Rightarrow \quad 8 x & =-2 \\
x & =-2 / 8 \\
x & =-1 / 4
\end{aligned}
$$

c) $x^{4 / 5}=23$

$$
\begin{aligned}
\left(x^{4 / 5}\right)^{5 / 4} & =(23)^{5 / 4} \\
x & =50.37
\end{aligned}
$$

d) $3^{x}=125$

$$
\begin{aligned}
\log 3^{x} & =\log 125 \\
x \log 3 & =\log 125 \\
x & =\frac{\log 125}{\log 3} \\
x & =4.39
\end{aligned}
$$

$$
\left(\begin{array}{rl}
\text { OR } \log 6^{3 x-6} & =\log 1 \\
(3 x-6) \log 6 & =\log 1 \\
3 x \log 6-6 \log 6 & =\log 1 \\
3 x \log 6 & =\log 1+6 \log 6 \\
x(3 \log 6) & =\log 1+6 \log 6 \\
x & =\frac{\log 1+6 \log 6}{(3 \log 6)}=2
\end{array}\right.
$$

$$
\log 4^{8 x}=\log 1 / 16
$$

$$
8 \times \log 4=\log 1 / 6
$$

$$
x(8 \log 4)=\log 1 / 6
$$

$$
x=\frac{\log 1 / 6}{(8 \log 4)}
$$

$$
x=-1 / 4
$$

$$
\begin{aligned}
& \text { e) } 65=\text { etc }(e \text { is a number, just like } \pi \text { is a number) } O R \\
& \log 65=\log e^{7 x} \\
& \log 65=7 \times \log e \\
& \log 65=x(7 \log e) \\
& x=\frac{\log 65}{(7 \log e)}=0.60 \\
& \text { f) } 7\left(2^{x}\right)=5^{x-2} \\
& \log \left[7\left(2^{x}\right)\right]=\log \left(5^{x-2}\right) \\
& \log 7+\log 2^{x}=(x-2)^{x} \log 5 \\
& \log 7+\underbrace{x \log 2}=x \log 5-2 \log 5 \\
& x \log 2-x \log 5=-2 \log 5-\log 7 \\
& x(\log 2-\log 5)=-2 \log 5-\log 7 \\
& x=\frac{(-2 \log 5-\log 7)}{(\log 2-\log 5)} \doteq 5.64 \\
& \text { g) } 17^{x+4}=196^{3 x-2} \\
& \log 17^{x+4}=\log 196^{3 x-2} \\
& (x+4) \log 17=(3 x-2 \sqrt{\log } 196 \\
& x \log 17+4 \log 17=\underbrace{3 x \log 196}-2 \log 196 \\
& x \log 17-3 x \log 196=-2 \log 196-4 \log 17 \\
& x(\log 17-3 \log 196)=-2 \log 196-4 \log 17 \\
& x=\frac{(-2 \log 196-4 \log 17)}{(\log 17-3 \log 196)} \doteq 1.68 \\
& \text { By the way, } \\
& \text { Change form } \\
& \log _{e} 65=7 x \\
& \frac{\log 65}{\log e}=7 x \\
& x=\frac{\left(\frac{\log (5}{\operatorname{loge} e}\right)}{7} \\
& \text { way to } \\
& \text { evaluate is } \\
& \begin{array}{l}
x=\frac{\operatorname{LN} C_{5}}{} \\
x=0.60^{7}
\end{array} \\
& =0.40
\end{aligned}
$$

$$
-(\log 17-3 \log 196)
$$

2. Solve these logarithmic equations for x.
a) $\log _{3}(4 x-1)=2$

$$
\begin{aligned}
3^{2} & =4 x-1 \\
9 & =4 x-1 \\
\frac{10}{4} & =\frac{4 x}{4}
\end{aligned}
$$

b) $\log _{5} 24-\log _{5} 2=\log _{5} 3 x$

$$
\begin{aligned}
\log _{5}\left(\frac{24}{2}\right) & =\log _{5} 3 x \\
\log _{5}(12) & =\log _{5} 3 x \\
\Rightarrow \frac{12}{3} & =\frac{3 x}{3} \quad x=4
\end{aligned}
$$

c) $\log (8+2 x)=\log (7 x-2)$

$$
\begin{aligned}
\Rightarrow \quad 8+2 x & =7 x-2 \\
\frac{-5 x}{-5} & =\frac{-10}{-5} \\
x & =2
\end{aligned}
$$

d) $\log _{2 x} 64=2$

$$
\begin{aligned}
&(2 x)^{2}=64 \\
& \frac{4 x^{2}}{4}=\frac{64}{4} \\
& x^{2}=16 \\
& x= \pm 4 \quad \text { but only } \quad x=4 \text { is valid, } \\
& \text { since base must be }>0
\end{aligned}
$$

e) $\log _{x} 125=3$

$$
\begin{gathered}
\sqrt[3]{x^{3}}=\sqrt[3]{125} \\
x=5
\end{gathered}
$$

f) $\log x+\log 12=\log 8$

$$
\begin{aligned}
\log (12 x) & =\log 8 \\
\Rightarrow \quad \frac{12}{12} x & =\frac{8}{12} \\
x & =\frac{8}{12}, x=\frac{2}{3}
\end{aligned}
$$

3. Solve these logarithmic equations for x .
a) $x \log 26=\log 13$

$$
\begin{gathered}
x=\frac{\log 13}{\log 26} \\
x=0,79
\end{gathered}
$$

b) $\log (5 x+4)=3$

$$
\begin{aligned}
& x=\frac{996}{5} \\
& x=199.2
\end{aligned}
$$

c) $\log _{4} 188=x$

$$
\begin{aligned}
& x=\frac{\log 188}{\log 4} \quad \text { (Change of base law) } \\
& x=3.78
\end{aligned}
$$

d) $\log 42=\log 14-\log x$

$$
\begin{aligned}
\log 42 & =\log \left(\frac{14}{x}\right) \\
\Rightarrow 42 & =\frac{14}{x} \\
\frac{42}{42} x & =\frac{14}{42}
\end{aligned}
$$

e) $\ln x-\ln 4=\ln 5$ ("ln" means $\log _{e}$)

$$
\begin{array}{r}
\ln \left(\frac{x}{4}\right)=\ln 5 \\
\Rightarrow \frac{x}{4}=5 \\
x x=20
\end{array}
$$

f) $\ln x-\ln 4=5$ (This is NOT the same question as part e)

$$
\begin{aligned}
\ln \left(\frac{x}{4}\right) & =5 \\
e^{5} & =\frac{x}{4} \\
x & =4 e^{5}
\end{aligned}
$$

$$
x=593.65
$$

g) $\log _{2}\left(x^{2}+8\right)-\log _{2} 6=\log _{2} x$

$$
\begin{aligned}
\log _{2}\left(\frac{x^{2}+8}{6}\right) & =\log _{2} x \\
\Rightarrow \frac{x^{2}+8}{6} & =x \\
x^{2}+8 & =6 x \\
x^{2}-6 x+8 & =0 \\
(x-2)(x-4) & =0
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{14}{42} \\
& x=1 / 3
\end{aligned}
$$

h) $\log _{5}(3 x+1)+\log _{5}(x-3)=3$

$$
\begin{aligned}
& \log _{5}[(3 x+1)(x-3)]=3 \\
& \log _{5}\left(3 x^{2}-9 x+x-3\right)=3 \\
& 5^{3}=3 x^{2}-8 x-3 \\
& 0=3 x^{2}-8 x-3-125
\end{aligned}
$$

$$
\left[\begin{array}{l}
3 x^{2}-8 x-128=0 \\
x=\frac{8 \pm \sqrt{64-(4)(3)(-128)}}{2(3)} \\
x=\frac{8 \pm \sqrt{64+1536}}{6} \\
x=\frac{8 \pm \sqrt{1600}}{6} x x=\frac{48}{6}=8 \\
x=\frac{8 \pm 40}{6} \rightarrow x=\frac{32}{6}=+16
\end{array}\right.
$$ not

j) $\log _{5}(x-6)=1-\log _{5}(x-2)$

$$
\begin{gathered}
\log _{5}(x-6)+\log _{5}(x-2)=1 \\
\log _{5}[(x-6)(x-2)]=1 \\
\log _{5}\left(x^{2}-2 x-6 x+12\right)=1
\end{gathered}
$$

$$
5^{\prime}=x^{2}-8 x+12
$$

$$
0=x^{2}-8 x+7
$$

$$
\begin{aligned}
& 0=(x-1)(x-7) \\
& 0=
\end{aligned}
$$

$$
x=7
$$

reject

$$
\begin{aligned}
& \text { i) } \log _{2}(x-2)+\log _{2} x=\log _{2} 3 \\
& \log _{2}[(x-2)(x)]=\log _{2} 3 \\
& \log _{2}\left(x^{2}-2 x\right)=\log _{2} 3 \\
& \Rightarrow x^{2}-2 x=3 \\
& x^{2}-2 x-3=0 \\
& (x+1)(x-3)=0
\end{aligned}
$$

k) $2 \log _{3} x-\log _{3}(x+3)-3=0$

$$
\log _{3} x^{2}-\log _{3}(x+3)=3
$$

$$
\log _{3}\left(\frac{x^{2}}{x+3}\right)=3
$$

$$
3^{3}=\frac{x^{2}}{x+3}
$$

$$
27=\frac{x^{2}}{x+3}
$$

$$
27(x+3)=x^{2}
$$

1) $\log _{5}(x+1)+\log _{5}(x-3)=1$

$$
\begin{gathered}
\log _{5}[(x+1)(x-3)]=1 \\
\log _{5}\left(x^{2}-3 x+1 x-3\right)=1 \\
5^{\prime}=x^{2}-2 x-3 \\
0=x^{2}-2 x-8 \\
0=(x+2)(x-4)
\end{gathered}
$$

$$
\begin{aligned}
& 27 x+81=x^{2} \\
& 0=\frac{x^{2}-27 x-81}{2(1)} \\
& x=\frac{27 \pm \sqrt{(-27)^{2}-(4)(1)(-81)}}{2}
\end{aligned}
$$

$$
x=4
$$

Revisiting Exponential Application Questions \& Formulae

Compound Interest: $A=A\left(1+\frac{r}{n}\right)^{n t}$

General Growth/Decay: $A=A_{\circ}(b)^{\frac{t}{n}}$

General Earthquake/pH: $I=(10)^{\text {high-low }}$

Word Problems that Contain Exponential

 Equations with Different BasesThat sounds hard. Just looking at that I'm not sure if I'm makes my brain hurt, ready for this. but I'll give it a try.

Growth of a certain strain of bacteria is modeled by the equation $G=A(2.7)^{0.584 t}$ where:	$2,500=4(2.7)^{0.584 t}$	隹e the equation
	$625=(2.7)^{0.58}$	Simplify the equation
	$\log 625=\log (2.7)^{0.5847}$	urn it into a log equation
$G=$ final number of bacteria	$\log 625=0.584+\log (2$	Apply the logarithm laws
$A=$ initial number of bacteria $t=$ time (in hours)	$\frac{\log 625}{0.584 \log 2.7}=\uparrow$	Isolate the variable
In approximately how many hours will 4 bacteria first increase to 2,500 bacteria? Round your answer to the nearest hour.	$t=11.09844215$	Solve with your calculator
		Make sure you use the proper parenthetical formation.
	increase to 2,500 in approximately 12 hours.	Answer the question.

JANO6 32
Difficulty level DefCon 3 4 points

The current population of Little Pond, New York is 20,000 . The population is decreasing, as represented by the formula $P=A(1.3)^{-0.234 t}$ where $P=$ final population, $t=$ time, in years, and $A=$ initial population.
What will the population be 3 years from now? Round your answer to the nearest hundred people.
To the nearest tenth of a year how many years will it take for the population to reach half the present population?

$P=20,000(1.3){ }^{-0.234(3)}$		
$P=16,635.72614$		Solve with your calculator
The population will be approximately 16,600		Answer the question.
Part b		
$10,000=20,000(1.3)-0.234 t$ Write the equation		
$1=2(1.3)-0.234 t \quad$ Simplify the equation		
$\log 1=\log 2(1.3)^{-0.234 t}$ Turn it into a \log equation		
$\begin{aligned} & \log 1=\log 2+\log (1.3)^{-0.234 t} \\ & \log 1=\log 2-0.234 t \log (1.3) \end{aligned}$		
$\begin{gathered} \log 1-\log 2=-0.23 \\ \frac{\log 1-\log 2}{-0.234 \log 1.3}=\uparrow \end{gathered}$		
$t=11.2903$	Solve with your calculator Make sure you use the proper parenthetical formation.	
It will take approximately 11.3 years		
	Answer the	question.

Depreciation (the decline in cash value) on a car can be determined by the formula $V=C(1-r)^{*}$, where V is the value of the car after t years, C is the original cost of the car, and r is the rate of depreciation. If a car's cost, when new, is $\$ 15,000$ the rate of depreciation is 30%, and the value of the car now is $\$ 3,000$, how old is the car to the nearest tenth of a year?

$\begin{aligned} 3,000 & =15,000(1 \\ .2 & =(1-.30)^{t} \\ 2 & =(.7)^{\dagger} \end{aligned}$	Write the equation Simplify the equation
$\log (.2)=\log (.7)^{\dagger}$	Turn it into a log equation
$\log (.2)=\dagger \log (.7)$	Apply the logarithm laws
$\frac{\log (.2)}{\log (.7)}=\dagger$	Isolate the variable
$t=4.512338026$	Solve with your calculator
The car is approximately 4.5 years old	Make sure you use the proper parenthetical formation. Answer the question.

Earthquakes, Sound, pH

Logarithms can be used to solve applications comparing the intensity of earthquakes, the intensity of sounds, and the acidity or alkalinity of solutions. The Richter scale for earthquakes, the decibel scale for sounds and the pH scale for solutions are all base 10 .

$I=I_{0}(10)^{R-r}$	where:
	$I=$ intensity of a stronger earthquake $I_{o}=$ intensity of weaker earthquake
	$R=$ Richter magnitude of stronger earthquake $r=$ Richter magnitude of weaker earthquake
$I=I_{0}(10)^{(D-d) / 10}$	where:
	$\begin{aligned} & \text { I = intensity of a louder sound } \\ & \mathrm{I}_{\mathrm{o}}=\text { intensity of a softer sound } \end{aligned}$
	$D=$ decibel level of louder sound $d=$ decibel level of softer sound
$I=I_{0}(10)^{P-p}$	where:
	$I=$ new solution that is compared to original one $I_{o}=$ "original" solution
	$P=$ larger pH reading $p=$ smaller pH reading

- A neutral solution has a pH of 7 .
- Solutions with pH larger than 7 are basic, or alkaline.
Solutions with pH smaller than 7 are acidic.

$$
p H=-\log \left[\mathrm{H}^{+}\right] \quad \text { where }\left[\mathrm{H}^{+}\right] \text {is the hydrogen ion concentration in moles per liter }
$$

The exponent is always a difference: larger reading - smaller reading For sound questions, divide each decibel reading by 10 .

Example

la) In 1983, an earthquake measuring 5.5 on the Richer scale occurred in Columbia. In 1989, the San Francisco earthquake measured 6.9 on the Richter scale. How much more intense was the San Francisco earthquake than the Columbia earthquake?
b) Calculate the magnitude of an earthquake that is 1500 times as intense as the

Columbia earthquake. $R \rightarrow r \quad(R-5.5) I$

2. How much louder is a sound with an intensity of 112 dB compared to a sound with an intensity of 90 dB

$$
I=10^{\frac{D-d}{10}} \rightarrow I=10^{\frac{112-90}{10}} \rightarrow I=10^{\frac{22}{10}} \rightarrow I=10^{2-2} \quad \frac{R=8.7}{8.68}
$$

$$
\frac{22}{10}-2-2
$$

$$
I=158.49 \text { times borer }
$$

b) Ithree different jets are flying together at an air show, each with a sound level of 120 decibels, then find the approximate total decibel level.
3 times the $\quad \quad I=10^{\frac{D-120}{7-1}}$
Intensity $q=3 \log 3=1,10^{\frac{D-120}{10}}$
are jet $\therefore I=3$
$\log 3=\frac{D-120}{10} \log 10$

Example

$$
\begin{array}{cc}
& \text { same } \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] & I=I_{0}(10)^{P-p}
\end{array}
$$

$$
\begin{aligned}
& 10 \log 3+120=D \\
& D=124.78 \\
& \text { total decibel }
\end{aligned}
$$

a) A beaker of acid has a hydrogen ion concentration of $3.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. Calculate the pH \& 3 planes. of the acid. the pH of Solution B.

$\begin{aligned} & \text { ex } 3.5 \times 10^{6} \mathrm{~F} \\ & =3500000\end{aligned} \quad \begin{array}{r}\text { decingls } \\ \text { to right }\end{array}$
b) Solution A has a pH of 5.7. Solution B is 1260 times more acidic $=3500000$ Solution A. Find

$$
\begin{aligned}
& I=I_{0}(10)^{\alpha-r} \quad I_{0}=1 \text {. can ignore S.F earthquake } \\
& I=10^{6.9-55} \rightarrow I=10^{1.4} \text { calculatoto } \xrightarrow{I_{0}} \xrightarrow{I_{0}} \xrightarrow{\text { is }}=25.12
\end{aligned}
$$

For you to try...

$$
\text { * } 119,20,21 \text { ch 8 assign. } \quad \begin{array}{r}
\text { Pre-Calc } 12 \text { - Unit } 3 \\
\text { Page } 19
\end{array}
$$

1. How many times more intense is an earthquake with magnitude 8.3 than one with magnitude 6.7? (Round to nearest whole number.)
2. Bob was in an earthquake of magnitude 7.1. This earthquake was 420 times more intense than a smaller earthquake that his friend Joan was in. Find the magnitude of the smaller earthquake, correct to one decimal place.
3. How many times more intense is the sound of a power saw, 120 dB , than that of a leaf rustling, 10 dB ?
4. Two telephones in a home ring at the same time with a loudness of 80 decibels each. What is the decibel rating of the total loudness? (Note that 150 dB is the sound of a jet engine, from 20 meters away, so the correct answer to this question is NOT 160 dB .)

$$
2=10^{\frac{D-78}{10}}
$$

5. Determine the pH of a solution, to the nearest tenth, if they hydrogen ion concentration is $3.4 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$.
6. Swimming pool water has a pH of 7.5 . Sea water is about 8 times as alkaline as swimming pool water. What is the pH reading for sea water?

Answers:

1. The magnitude 8.3 earthquake is about 40 times more intense than the 6.7 earthquake.
2. Magnitude of the smaller earthquake is 4.5 on Richter scale.
3. The sound of the power saw is about 10^{11} times as intense as that of a leaf rustling.
4. The total loudness is about 83 dB .
5. The solution has a pH of 3.5

6 . The pH reading for sea water is about 8.4

$$
\begin{aligned}
& A=A_{0}(b)^{t / p} \quad A=P(1+i)^{n} \\
& \text { graoth/decay } \quad i=\frac{r}{n} \quad n=t n \\
& \text { ex: doubling } b=2 \\
& \text { half-life } b=\frac{1}{2} \text { or } b=0.5 \quad \begin{array}{l}
\text { compounding } \\
\text { period. } \\
\text { ex: } \operatorname{monthly}=n=12 \\
\text { weed dy }=n=52
\end{array}
\end{aligned}
$$

Your Turn
To the nearest hundredth of a metre, what was the skull length of a Tyrannosaurus rex with an estimated body mass of 5500 kg ?

$$
\text { formula } \Rightarrow 3.6022 \log s=\log m-3.4444
$$

$$
\begin{gathered}
\frac{3.6022 \log s}{\underbrace{362}_{36022}}=\frac{\log 5500-3.4444}{3.6022} \\
\underbrace{\log _{10} S}_{300 \pi}=\frac{\log 5500-3.4444}{3.6022} \\
S=10^{\frac{\log 5500-3.4499}{3.6022}}
\end{gathered}
$$

$s=1.2 \mathrm{~m}$ length of skull.
$p .411$
Your Turn
The rate at which an organism duplicates is called its doubling period. The general equation N, where N is the number present after time t, N_{0} is the original number, and d is the doubling period. E. coli is a rod-shaped bacterium commonly found in the intestinal tract of warm-blooded animals. Some strains of E. coli can cause serious food poisoning in humans. Suppose a biologist originally estimates the number of E. coli bacteria in a culture to be 1000 . After 90 min, the $t=90 \mathrm{~min}(p) \log 19.5=\frac{90}{p} \log 2(p)$
estimated count is 19500 bacteria. What is the doubling period of the E. coli bacteria, to the nearest minute?

$$
A_{0}=1000>p ?
$$

$$
\frac{p \log 19.5}{\log 19.5}=\frac{90 \log 2}{\log 19.5}
$$

$$
p=\frac{90 \operatorname{tog} 2}{\log ^{19.5}}
$$

(13.) The compound interest formula is $A=P(1+i)^{n}$, where A is the future amount, P is the present amount or principal, i is the interest rate per compounding period expressed as a decimal, and n is the number of compounding periods. All interest rates are annual percentage rates (APR).
a) David inherits $\$ 10000$ and invests in a guaranteed investment certificate (GIC) that earn 6% compounded $\longleftarrow n=2$ semi-annually. How long will it take for the GIC to be worth $\$ 11000$?
b) Linda used a credit card to purchase a $\$ 1200$ laptop computer. The rate of interest charged on the overdue balance is 28% per year, compounded daily. How many days is Linda's payment overdue if the amount shown on her credit card statement is $\$ 1241.18$?
c) How long will it take for money invested at 5.5%, compounded semi-annually, to triple in value?

$$
p .414
$$

$$
P=21.0 \mathrm{~mm} \text { is doubling period }
$$

$$
i=\frac{r}{n} \quad n=t n
$$

$$
\left(\begin{array}{ll}
i=\frac{0.06}{2} & n=t(2) \\
n=2 t
\end{array}\right.
$$

$$
r=0.06 \quad \text { formula }
$$

$$
\log 1.1=\log (1.03)^{2 t}
$$

$$
\begin{aligned}
& \frac{\log 1.1}{2 \log 103}=\frac{2 t \log 1.03}{2 \log 1.03} \\
& t=\frac{\log 1.1}{2 \log 1.03} \\
& t=1.6 \mathrm{yr} \quad\binom{n 0 t}{2.66 \times 10^{-4}} \\
& 1 \ldots(1.1) / 2 \log 1.03
\end{aligned}
$$

invested at 5.5%, compounded semi-annually, to triple in value?

$$
\begin{aligned}
& t=1.6 \mathrm{yr} \quad\binom{n 0 t}{2.66 \times 10^{-4}} \\
& \log (1.1) / 2 \log 1.03
\end{aligned}
$$

15. Swedish researchers report that they have discovered the world's oldest living tree. The spruce tree's roots were radiocarbon dated and found to have 31.5% of their carbon-14 (C-14) left. The half-life of C-14 is 5730 years. How old was the tree when it was discovered?
16. Radioisotopes are used to diagnose various illnesses. Iodine-131 (I-131) is administered to a patient to diagnose thyroid gland activity. The original dosage contains 280 MBq of I-131. If none is lost from the body, then after 6 h there are 274 MBq of $\mathrm{I}-131$ in the patient's thyroid. What is the half-life of I-131, to the nearest day?
a. Carbon-14 has a half-life of 5740 years. How long would it take a 5.3 gram sample to decay to 1.9 grams.
b. A certain kind of mold triples every 7 days. How long would it take a sample of 125 cells to grow to 100,000 cells?
c. The population of Langley increases by 0.5% per year with a current population of 127,000 people. What would the populations be in 10 years?

How long would it take for the populations to reach 200,000 people?
d. If an earthquake in Town A is 3500 times more intense than an earthquake of magnitude 4.2 in Town B, what is the magnitude of the earthquake in Town A ?
e. If the pH of stomach acid at 2.2 is 50,000 times more acidic than urine, what is the pH of urine?
13. The following function represents the blood pressure, in mmHg , of young adults related to the blood vessel volume, in microlitres.

$$
V(p)=0.23+0.35 \log (p-56.1)
$$

a. Determine the blood vessel volume if the blood pressure is 120 mmHg .
b. Determine the blood pressure if the vessel volume is 0.9 microlitres.
8.4 Practice

Extra Practice for Chapter 8.4

Applications

3. A scientist started with a culture of 20 bacteria in a dish. He noticed that after 80 hours, there were 1800 bacteria. What is the doubling time of this bacteria?
4. At the beginning of the year, you deposit $\$ 1000$ into a bank account, with an annual interest rate of 5%. Assume no other deposits or withdrawals are made and the interest rate stays constant.
a) what will be the value of the account after 5 years if interest is compounded annually?
b) how long will it be when his money doubles in value?

Extra Practice for Chapter 8.4

5. When people take a particular medicine, the drug is metabolised and eliminated at a certain rate. Suppose the initial amount of a drug in the body is 200 mg and is eliminated at a rate of 30% per hour. How long will it take to reach 10 mg ?
6. Certain bacteria, given favourable growth conditions, grow continuously at a rate of 4.6% a day. Find the bacterial population after thirty-six hours, if the initial population was 250 bacteria.

Extra Practice for Chapter 8.4

7. A penicillin solution has a half-life of 6 days. How long will it take for the concentration to drop to 70% of the initial concentration?
8. What is the magnitude of the earthquake in City A if the earthquake in City B has a magnitude of 5.7 on the Richter scale and is 4500 times as intense?

Extra Practice for Chapter 8.4

9. What is the pH of a tomato if it is 15000 times more acidic than hand soap with a pH of 9.5 ?
10. It is said that the eardrum can rupture at a decibel level that is $100,000,000$ times as intense as the normal sound level of a vacuum at 70Db on the Decibel scale (that would be like listening to a jet at take-off). At what Db value on the scale can the eardrum rupture?

C_21 Key \& Applications Set-up Solve

(Ш) C_21 Setting Up Equations and Key

APPLICATIONS - can you set these up, then solve?

1. There are 850 caribou in an area. The population grows at an annual rate of 2%. How long will it take until there are 1200 caribou?
2. After 10 days, a 250 mg sample of phosphorus- 32 decays to only $7 / 8$ of its original mass. What is its half-life?
3. How long will it take for $\$ 8500$ to grow to $\$ 14000$, if it is invested at 10% compounded monthly?
4. A very loud sound, registering 210 dB , is being compared to a softer sound that registered 130 dB . How many times louder is the louder sound?
5. You survive a 8.4 earthquake. A friend tells you they were in a 5.2 earthquake. How much stronger was the earthquake you were in?

SOLUTIONS

1. There are 850 caribou in an area. The population grows at an annual rate of 2%. How long will it take until there are 1200 caribou?
2. How long will it take for $\$ 8500$ to grow to $\$ 14000$, if it is invested at 10% compounded monthly?

$$
\begin{aligned}
\frac{14,008}{85 \times y} & =\frac{8500}{8 / 50}\left(1+\frac{0.10}{12}\right)^{n} \\
\frac{140}{85} & =(1.008 \overline{3})^{n} \\
\log \left(\frac{140}{85}\right) & =(\log 1.008 \overline{3})^{n} \\
\log \left(\frac{40}{85}\right) & =n \log 1.008 \overline{3}
\end{aligned}
$$

$$
n=\frac{\log \left(\frac{140}{85}\right)}{\log 1.0083}
$$

$$
h \equiv 60.128
$$

compounding pernod,

$$
\Rightarrow \frac{60.128}{12}=\begin{gathered}
5.01 \\
\text { years }
\end{gathered}
$$

$$
\begin{aligned}
& \text { original mass. What is its half-life? } \\
& \begin{aligned}
& \frac{7}{8}(250)=\frac{250}{250}(0.5)^{\frac{10}{4}} \\
& 2 / 50
\end{aligned} \quad \begin{aligned}
h \times\left[\log \frac{7}{8}\right] & =\left[\frac{10}{L}(\log 0.5)\right] \times h \\
h & =10 \log 0.5
\end{aligned} \\
& \frac{7}{8}=(0.5)^{10 / 4} \\
& h=\frac{10 \log 0.5}{\log (7 / 8)} \\
& h=51.9 \mathrm{Jays} \\
& \log _{3}\left(\frac{1}{8}, 5\right)=1 \log (0.5)^{10} / 2
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1200}{850}=\frac{850}{850}(1.02)^{n} \quad\left(\begin{array}{ll}
\log \left(\frac{1200}{850}\right) & =\log 1.02^{n} \\
\log \left(\frac{1200}{850}\right) & =n \log 1.02
\end{array}\right. \\
& \frac{1200}{850}=1.02^{n} \\
& \begin{array}{l}
\log \left(\frac{120}{850}\right)=n \log 1.02 \\
\frac{\log (12 \mathrm{w} / 850}{\log 1.02}=n, n=17.4 \\
\text { years }
\end{array} \\
& \text { 2. After } 10 \text { days, a } 250 \mathrm{mg} \text { sample of phosphorus- } 32 \text { decays to only } 7 / 8 \text { of its }
\end{aligned}
$$

4. A very loud sound, registering 210 dB , is being compared to a softer sound that registered 130 dB . How many times louder is the louder sound?

$$
\begin{aligned}
& I=I_{0}(10)^{\frac{D-d}{10}} \\
& I=I_{0}(10)^{\frac{210-130}{10}} \\
& I=I_{0}(10)^{86 / 10} \\
& I=I_{0}(10)^{8}
\end{aligned}
$$

It's 10^{8} times as loud.
5. You survive a 8.4 earthquake. A friend tells you they were in a 5.2 earthquake. How much stronger was the earthquake you were in?

$$
\begin{aligned}
& I=I_{0}(10)^{R-r} \\
& I=I_{0}(10)^{8.4-5.2} \\
& I=I_{0}(10)^{3.2} \\
& I=I_{0}(1584.89)
\end{aligned}
$$

Your earthquelce is about 1584.89 times as strong as your friend's.

