Class_20 Nov 17 - Log Equations and Applications

Tonight's Class:

- 8.3 Logarithm Laws
- 8.4 Log Equations and Applications
- Unit 3 Test (Chapters 7 and 8) on Thursday, Nov 24

Last time we looked at two kinds of questions involving logs:

$$
\begin{aligned}
& \log _{2} 2+\log _{2} 16=1+4=5 \\
& \log _{5} 125-\log _{5} 25=3-2=1
\end{aligned}\left\{\begin{array}{l}
\log _{2}(32)=5 \\
\log _{5}(5)=1
\end{array}\right.
$$

8.3 Laws of Logarithms

Product Law:	$\log _{c}(M N)=\log _{c} M+\log _{c} N$
Quotient Law:	$\log _{c}\left(\frac{M}{N}\right)=\log _{c} M-\log _{c} N$
Power Law:	$\left\ulcorner^{-} \log _{c}\left(M^{\prime}\right)=P \log _{c} M\right.$

To Try:

1. Evaluate without using the "log" button:

$$
\begin{aligned}
\log _{3} 54-\log _{3} 2 & =\log _{3}\left(\frac{54}{2}\right) \\
& =\log _{3}(27)=3
\end{aligned}
$$

2. Find the value of each of the following without using a calculator:
a) $\ln 1=\log _{e} 1$
$\mathrm{b} \ln e=\log _{e} e$

$\begin{aligned} & 4 \cdot \ln e \\ =1 & =4 \cdot 1\end{aligned}$
3. Evaluate without using the "log" button:

$$
\log _{14} 4+\log _{14} 49=\log _{14}(4 \cdot 49)
$$

$$
=\log _{14}(196)
$$

Change of Base Formula: $\quad \log _{C} A=\frac{\log _{B} A}{\log _{B} C}$

1. Evaluate. Give answer correct to 4 decimal places

$$
\log _{2} 18=\frac{\log 18}{\log 2}=4.1699
$$

2. Express as a single logarithm.

$$
\frac{\log 30}{\log 5}=\log _{5} 30
$$

3. Rewrite this equation so you can graph it on a graphing calculator: $y=\log _{4} x$

For the test-[$\left[\begin{array}{l}\text { graph } \\ \text { Desmos sclaletifific }\end{array}\right.$

$$
\log \left(35 x^{2} y^{3}\right)=\log (35)+\log \left(x^{2}\right)+\log \left(y^{3}\right)
$$

or condense

$$
\begin{aligned}
&\left(1 . \begin{array}{rl}
\log _{3}\left(4 y^{2}\right) & =\log _{3} 4+\log _{3} y^{2} \\
& =\log _{3} 4+2 \log _{3} y
\end{array}\right. \\
& \underbrace{}_{2 \cdot 2 \log _{4} b+3 \log _{4} c}=\log _{4} b^{2}+\log _{4} c^{3} \\
&=\log _{4}\left(b^{2} c^{3}\right)
\end{aligned}
$$

$$
\text { 6. } \frac{1}{2}(\log b-\log c)=\frac{1}{2} \log b-\frac{1}{2} \log c
$$

$$
=\log b^{1 / 2}-\log c c^{1 / 2}
$$

$$
=\log \left(\frac{b^{1 / 2}}{c^{1 / 2}}\right)
$$

5. $\frac{1}{2} \log a+2 \log c$

$$
\begin{aligned}
& =\log a^{1 / 2}+\log c^{2} \\
& =\log \left(a^{1 / 2} c^{2}\right) \\
& =\log \left(\sqrt{a} c^{2}\right)
\end{aligned}
$$

$$
\text { 8. } \log \left(x^{2} y\right)^{4}=4 \log \left(x^{2} y\right)
$$

$$
\begin{aligned}
& =4 \log \left(x^{2} y\right) \\
& =4\left[\log x^{2}+\log y\right]-p \text { pole kano }
\end{aligned}
$$

$$
=4[2 \log x+\log y]
$$

$$
=8 \log x+4 \log y
$$

OR

$$
\begin{aligned}
& \frac{1}{2}(\log b-\log c) \\
& =\frac{1}{2}\left(\log \left(\frac{b}{c}\right)\right) \\
& =\log \left(\frac{b}{c}\right)^{1 / 2} \\
& =\log \sqrt{\frac{b}{c}}
\end{aligned}
$$

$$
=\frac{1}{2} \log a-2 \log c
$$

$$
\text { 3. } \ln ^{\ln (a b)}=\ln (a)+\ln (b)
$$

$$
\log _{e} a+\log _{e} b
$$

$$
\text { 4. } \log \left(\frac{a}{b}\right)=\log a-\log b
$$

$$
\text { 9. } 3 \log x-\log w^{2}
$$

$$
\begin{aligned}
& \text { (11.) } \frac{d \downarrow \downarrow}{} \operatorname{og}_{5}(5 x \sqrt{y})=\log _{5} 5+\log _{5} x+\log _{5} \sqrt{y} \text { 16. } \log _{7} y-2 \log _{7} w+\log _{7}(5 x) \\
& =1+\log _{5} x+\log _{5} y^{1 / 2} \\
& =1+\log _{5} x+\frac{1}{2} \log _{5} y \\
& \text { 12. } \begin{aligned}
\log \left(\frac{\sqrt{b c}}{a}\right) & =\log (b c)^{1 / 2}-\log a \\
& =\frac{1}{2} \log (b c)-\log a \\
& =\frac{1}{2}[\log b+\log c]-\log a \\
& =\frac{1}{2} \log b+\frac{1}{2} \log c-\log a
\end{aligned} \\
& \text { 12. } \begin{aligned}
\log \left(\frac{\sqrt{b c}}{a}\right) & =\log (b c)^{1 / 2}-\log a \\
& =\frac{1}{2} \log (b c)-\log a \\
& =\frac{1}{2}[\log b+\log c]-\log a \\
& =\frac{1}{2} \log b+\frac{1}{2} \log c-\log a
\end{aligned} \\
& \text { 12. } \begin{aligned}
\log \left(\frac{\sqrt{b c}}{a}\right) & =\log (b c)^{1 / 2}-\log a \\
& =\frac{1}{2} \log (b c)-\log a \\
& =\frac{1}{2}[\log b+\log c]-\log a \\
& =\frac{1}{2} \log b+\frac{1}{2} \log c-\log a
\end{aligned} \\
& \text { 12. } \begin{aligned}
\log \left(\frac{\sqrt{b c}}{a}\right) & =\log (b c)^{1 / 2}-\log a \\
& =\frac{1}{2} \log (b c)-\log a \\
& =\frac{1}{2}[\log b+\log c]-\log a \\
& =\frac{1}{2} \log b+\frac{1}{2} \log c-\log a
\end{aligned} \\
& =\log _{7} y-\log _{7} \omega^{2}+\log _{7}(5 x) \\
& =\log _{7}\left(\frac{y}{\omega^{2}}\right)+\log _{7}(5 x) \\
& =\log _{7}\left(\frac{y}{\omega^{2}} \cdot 5 x\right)=\log _{7}\left(\frac{5 x y}{\omega^{2}}\right) \\
& \text { 17. } \log a+3 \log b-2 \log c \\
& =\log a+\log b^{3}-\log c^{2} \\
& =\log \left(a b^{3}\right)-\log c^{2} \\
& =\log \left(\frac{a b^{3}}{c^{2}}\right) \\
& =\log a^{2}-\log b^{4} \\
& =\log \left(\frac{a^{2}}{b^{4}}\right) \\
& \text { (14.) } \log \left(a^{2} c\right)=\log a^{2}+\log c \\
& =2 \log a+\log c \\
& \text { (15. } \begin{aligned}
\log \left(\frac{x}{y w}\right) & =\log x-\log (y \omega) \\
& =\log x-[\log y+\log \omega] \\
& =\log x-\log y-\log \omega
\end{aligned} \\
& \begin{aligned}
= & \log _{5} x^{1 / 4}-\log _{5} 3 x \\
= & \log _{5}\left(\frac{\sqrt[4]{x}}{3 x}\right)
\end{aligned} \xrightarrow{20.2 \log c-(3 \log a+\log b)} \quad \longrightarrow \begin{array}{l}
\longrightarrow \log _{5}\left(\frac{x^{1 / 4}}{3^{x}}\right) \\
\\
=\log _{5}\left(\frac{x^{1 / 4-x}}{3}\right)
\end{array} \\
& =\log c^{2}-\left(\log a^{3}+\log b\right) \\
& \text { 15. } \begin{aligned}
\log \left(\frac{x}{y w}\right) & =\log x-\log (y \omega) \\
& =\log x-[\log y+\log \omega] \\
& =\log x-\log y-\log \omega
\end{aligned} \\
& =\log c^{2}-\left(\log \left(a^{3} b\right)\right) \\
& =\log x-\log y-\log w=\log \left(\frac{c^{2}}{a^{3} L}\right) \\
& \text { 19. } \frac{\log _{5} x}{4}-\log _{5}(3 x) \\
& =\frac{1}{4} \log _{5} x-\log _{5} 3 x \\
& =\log _{s} x^{1 / 4}-\log _{5} 3 x \\
& \begin{array}{l}
\text { 18. } 5 \log _{4} 2-\frac{1}{3} \log _{4} 8 \\
=\log _{4} 2^{5}-\log _{4} 8^{1 / 3} \\
=\log _{4}\left(\frac{2^{5}}{8^{1 / 3}}\right)=\log _{4}\left(\frac{32}{2}\right)=\log _{4}(16) \\
=2
\end{array} \\
& =\log _{5}\left(\frac{x^{-3 / 4}}{3}\right) \\
& =\log _{5}\left(\frac{1}{3 x^{3 / 4}}\right)
\end{aligned}
$$

Know these 4 log laws.

1) Product Law: $\log (A B)=\log (A)+\log (B)$
2) Quotient Law: $\log \left(\frac{x}{y}\right)=\log X-\log y$
3) Power Law: $\log \left(A^{P}\right)=P \log A$
4) Change of Base Law:

$$
\log _{c} A=\frac{\log A}{\log C}
$$

Small WB - Using Log Laws
TB p 396
Your Turn
Use the laws of logarithms to simplify and evaluate each expression.
b) $\log _{5} 1000-\log _{5} 4-\log _{5} 2=\log _{5}\left(\frac{1000}{4 \cdot 2}\right)$

OR

$$
\begin{aligned}
& =\log _{5}\left(\frac{1000}{4}\right)-\log _{5} 2 \\
& =\log _{5} 125 \\
& =\log _{5}(250)-\log _{5} 2 \\
& =\log _{5}\left(\frac{250}{2}\right)=\log _{5}(125)=3
\end{aligned}
$$

c) $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$

$$
\begin{aligned}
& =\log _{3} 6^{2}-\log _{3} 6^{1 / 2}+\log _{3} 2 \\
& =\log _{3}\left(\frac{36}{64^{1 / 2}}\right) \\
& =\log _{3}\left(\frac{72}{\sqrt{64}}\right)=\log _{3}\left(\frac{72}{8}\right)=\log _{3} 9=2
\end{aligned}
$$

TB p 401
8. If $\log 3=P$ and $\log 5=Q$, write an algebraic expression in terms of P and Q for each of the following.
a) $\log \left(\frac{3}{5}\right)=\log 3-\log 5=P-Q$
b) $\log 15=\log (3 \times 5)=\log 3+\log 5=P+Q$
c) $\log 3 \sqrt{5}=\log (3)+\log \sqrt{5}=P+\log 5^{1 / 2}$
d) $\log \frac{25}{9}=P+\frac{1}{2} \log 5$

$$
\begin{aligned}
\log \left(\frac{S^{2}}{3^{2}}\right)=\log 5^{2}-\log 3^{2} & =2 \log S-2 \log 3 \\
& =2 P-2 Q
\end{aligned}
$$

8.4 Logarithmic and Exponential Equations

Solving Logarithmic Equations

1. Use logarithm laws to simplify equation into one of two forms:

- $\log _{c}($ argument $)=$ number
- in this case, change to exponential form and solve
- $\log _{c}$ (argument) $=\log _{c}$ (another argument)
- in this case, set the two arguments equal

2. Use algebra to solve the equation you created in step 1 .
3. Substitute each solution into the original equation. If the solution makes the argument become zero or a negative number, then it is an extraneous solution and must be rejected.

To Try: Rand to two decind places, if necessary.
Solve for x. Reject any extraneous solutions.
2 $2 \log _{4}(x+4)^{2}-\log _{4}(x+12)=1$
$2^{3}=x^{2}-10 x+24$
$8=x^{2}-10 x+24$
-8
$0=x^{2}-10 x+16$
$0=(x-2)(x-8)$ $x=8$

$\log _{4}\left[\frac{(x+4)^{2}}{x+12}\right]=1$

$$
\log _{4}\left(\frac{(x+\sqrt{4 x}+4)}{x+12}\right)=1
$$

$$
\begin{aligned}
& \log _{12}(3-x)(2-x)=1 \\
& \log _{12}\left(6-3 x-2 x+x^{2}\right)=1
\end{aligned}
$$

$$
\log _{12}\left(6-5 x+x^{2}\right)=1
$$

$$
\left.\log _{4}\right) \frac{\left(x^{2}+8 x+16\right)}{x+12}=1
$$

$$
\begin{array}{r}
12^{1}=x^{2}-5 x+6 \\
-12
\end{array}
$$

Change form

$$
\begin{aligned}
& 4 x+48 \\
& -4 x
\end{aligned}{ }_{-48}=x^{2}+8 x+16
$$

$$
0=x^{2}+4 x-32
$$

$$
0=x^{2}-5 x-6
$$

$$
0=(x-6)(x+1)
$$

Solving Exponential Equations with Different Bases

In chapter 7 we solved exponential equations by making each side of the equation use the same base. When that is hard to do, we can instead solve by taking the logarithm of each side of the original equation and solving the resulting equation.

Solving Exponential Equations with Different Bases

In chapter 7 we solved exponential equations by making each side of the equation use the same base. When that is hard to do, we can instead solve by taking the logarithm of each side of the original equation and solving the resulting equation.

To Try:
Solve for x. Solve correct to 2 decimal places.

1. $3^{x}=2800$

$$
\begin{aligned}
\log ^{x} & =\log 2800 \\
\frac{x \log 3}{\log 3} & =\frac{\log 2800}{\log 3} \\
x & =\frac{\log 2800}{\log 3}
\end{aligned}
$$

2. $e^{x}=2$

$$
\begin{aligned}
& { }^{5} \log e^{\cdots}=\log 2 \\
& \frac{x \log e}{\log e}=\frac{\log 2}{\log e} \quad x=\frac{\log 2}{\log e}
\end{aligned}
$$

3. $3\left(4^{2 x+3}\right)=8^{4 x-2}$
$\log \left[3\left(4^{2 x+3}\right)\right]=\log 8^{4 x-2}$

$$
\log 3+\sqrt[5]{\log 4^{2 x+3}}=\sqrt{2}^{4 x-2}
$$

$$
\log 3+(2 x+3)^{\&} \log 4=(4 x-2) \log 8
$$

$$
\begin{aligned}
& \log 3+(2 x+3) \log 4=(T x-2) \log \\
& \log 3+2 x \log 4+3 \log 4=2 \log 8 \text { (distribute) }
\end{aligned}
$$

$$
\begin{array}{ll}
\log 3+3 \log 4+2 \log 8 & =4 \times \log 8-2 \times \log 4
\end{array} \quad \begin{aligned}
& \text { collect } \\
& \text { xterm) }
\end{aligned}
$$

$$
\frac{(\log 3+3 \log 4+2 \log 8)}{(4 \log 8-2 \log 4)}=\frac{x(4 \log 8-2 \log 4)}{(4 \log 8-2 \log 4)}
$$

$$
x \doteq 1.70
$$

For next class, Tuesday, Nov 22

- Complete Chapter 8 Hand-in (\#1-15 for now)

- Prepare for the Unit 3 Test (Chapters 7-8, including "e" and natural log) It will be on THURSDAY, Nov 24.
- Can use scientific calculator, graphing calculator, and/or Desmos SCIENTIFIC calculator on this exam.

Study Suggestions:

- Complete optional worksheets (posted on website):
- More Solving Practice (Log \& Exponential Equations)
- Applications Set-up \& Solving
- Chapter 8 Review
- Unit 3 Practice Test
- Equation solving:
- TB p 412: 1, 2ac, 3, 4ac, 5, 6, 7acd, 8abd, 13, 16

Log Scale questions:

- TB p 401: 13bc, 16bc

TB p 417: 15, 17

- TB p 419: 6, 15

