Tonight's Class:

- Scholarships?
- Working through sections 6.2-6.4
- Dividing Rational Expressions (continued)
- Adding and Subtracting Rational Expressions
- Work on practice questions from worktext

If you

- Are graduating this year
- Are currently enrolled at LEC
- Have completed 3 courses with LEC
- Plan to attend post-secondary in the next 2 years
there are around 10 scholarships you could apply for. The deadline is very soon.

If you've got questions about this please check with Jody Primeau, our school counselor.

1) $\frac{5}{x}$
NPVS

$$
x \neq 0
$$

2) $\frac{17}{x-4}$

$$
x \neq 4
$$

3) $\frac{8}{2-x}$

4) $\frac{x+1}{x}$

$$
x \neq 0
$$

5) $\frac{3}{x^{2}-16}$

$$
\begin{aligned}
& x \neq 4 \\
& x \neq-4
\end{aligned}
$$

B KN

$$
\begin{array}{ll}
0 \text { denom }=0 & \\
x^{2}-16=0 & x^{2}-16=0 \\
(x+4)(x-4)=0 & x^{2}=16 \\
x=-4>x=4 & x= \pm \sqrt{16} \\
x>x=4
\end{array}
$$

6) 

$$
\begin{gathered}
\frac{5 x}{x^{2}+7 x+12}=\frac{5 x}{(x+3)(x+4)} \\
x+3=0 \quad x+4=0 \\
x \neq-3 \quad x \neq-4
\end{gathered}
$$

7) 

$$
\frac{10+3 x}{x^{2}-7 x}
$$

$$
\begin{gathered}
x^{2}-7 x \\
\text { denom }=0 \\
x^{2}-7 x=0 \\
x(x-7)=0 \\
x \neq \begin{array}{rl}
x \neq 7 & x \neq 0 \\
x \neq 0
\end{array}
\end{gathered}
$$

## WT page 533

Example 2

## Dividing Rational Expressions

Simplify each expression.
a) $\frac{5 n^{4}}{-2} \div \frac{(5 n)^{2}}{6}$
NPVS
for this:

1) change to multiplication
question
b) $\frac{2(x+1)}{3 x} \fallingdotseq \bigoplus^{4(x+1)}$
$x \neq 2$
$x \neq 0$
2) factor everything
3) NPV
4) simplify
b) $\frac{2(x+1)}{3 x} \cdot \frac{x(x-2)}{4(x+1)}$
NPVS $\quad x \neq 0$
$=\frac{2^{z^{2}}(x-2)}{12^{\div 2}}$

$$
x \neq-1
$$

$=\frac{1(x-2)}{6}=\frac{x-2}{6}$ where $x \neq-1,0,2$

## WT page 534

Example 3
Factoring before Simplifying Rational Expressions

Simplify each expression.
a) $\frac{x^{2}+5 x+4}{2 x^{2}-8 x+8} \cdot \frac{4 x-8}{x^{2}-1}$
b) $\frac{4 x-10}{x+3} \div \frac{12 x^{2}-60 x+75}{2 x^{2}-18}$


b) $\frac{4 x-10}{x+3} \div \frac{12 x^{2}-60 x+75}{2 x^{2}-18}$

$$
4 x^{2}-20 x+25
$$

$$
\frac{2(2 x-5)}{x+3} \div \frac{3\left(4 x^{2}-20 x+25\right)}{2\left(x^{2}-9\right)}
$$

$$
4 x^{2}-10 x-10 x+25 \quad \text { mut }\left\{\begin{aligned}
A C & =4(25) \\
= & 100
\end{aligned}\right.
$$

$$
\frac{2(2 x-5)}{x+3} \div \frac{3(2 x-5)(2 x-5)}{2(x-3)(x+3)}
$$

$$
=2 x(2 x-5)-5(2 x-5) \text { add }\{-20
$$

$$
=(2 x-5)(2 x-5)
$$

$$
1,100
$$

$$
2,50
$$

$$
\begin{gathered}
\text { NPVS: } x \neq-3, x \neq 3 \\
x \neq \frac{5}{2}
\end{gathered}
$$

$$
2 x-5 \neq 0
$$

$$
2 x \neq 5
$$

$$
\begin{gathered}
2,> \\
5,20 \\
-10,-10
\end{gathered}
$$

$$
x \neq \frac{5}{2}
$$

$$
\frac{2(2 x-5)}{x+3} \cdot \frac{2(x-3)(x+3)}{3(2 x-5)(2 x-5)}
$$

$$
=\frac{4(x-3)}{3(2 x-5)}
$$

$$
\text { Tody }{ }^{3(2 x-s)} \mathrm{Cyu} p-334 ; p 537-538, \not \approx 8,12
$$

### 6.3 Add \& Subtract Rational Expressions (part 1)

Focus: Add and subtract rational expressions with monomial denominators

## Adding <br> and Subtracting <br> Rational <br> Expressions

## Adding and Subtracting Fractions

Rational expressions are like fractions. Remember how to add/subtract fractions:

- find a lowest common denominator (LCD)
- write each term using that same denominator
- add/subtract the terms, keeping that same denominator
- simplify, if possible

$$
\begin{aligned}
& \begin{array}{ll} 
& \text { 1) Get Common denominuter } \\
\frac{5}{12}-\frac{1}{30}+\frac{3}{20}= & \text { 2) Make each term have thet denominater }
\end{array} \\
& =\frac{5}{12} \cdot \frac{5}{5}-\frac{1}{30} \cdot \frac{2}{2}+\frac{3}{20} \cdot \frac{3}{3} \\
& \begin{array}{l}
12=2 \cdot 2 \cdot 3 \\
30=2 \cdot\left[\begin{array}{l}
3 \\
20 \\
20
\end{array}\right) \cdot 2 \cdot \$ 5
\end{array} \\
& =\frac{25}{60}-\frac{2}{60}+\frac{9}{60} \\
& \begin{aligned}
\quad \text { LCD } & =2 \cdot 2 \cdot 3 \cdot 5 \\
(\text { least common }) & =60
\end{aligned} \\
& =\frac{25-2+9}{60} \\
& \text { 3) Adysthethe numecters. } \\
& =\frac{32^{2^{4}}}{60 \div^{4}}=\frac{8}{15} \\
& \text { 4) Reduce if possible }
\end{aligned}
$$

When rational expressions have common denominators, you

- state the NPVs
- add (or subtract) the numerators
- keep the common denominator

$$
\begin{aligned}
& \text { Example } \quad \frac{1}{3 x}+\frac{5}{3 x} \quad \text { i) NPVs } \begin{aligned}
\\
x \neq 0
\end{aligned} \\
& \begin{array}{rll}
=\frac{1+5}{3 x} & ={\frac{6^{3 x^{3}}}{3^{3}}} \begin{array}{ll}
\text { 2) add } \\
& =\frac{2}{x}, x \neq 0
\end{array} & \text { 3) simplify, if } \\
& \text { possible }
\end{array} \\
& \begin{array}{l}
\frac{6}{m+4}-\frac{2}{m+4} \\
=\frac{4}{m+4}, m \neq-4
\end{array}
\end{aligned}
$$

Try: page 551, \#3 and page 564, \#3ab

When rational expressions have different denominators, you must

- determine the LCD = Lowest Common Denominator
- multiply each one by a form of 1 that changes the denominator to the LCD
- state the non-permissible values (NPVs)
- add/subtract the numerators
- simplify answer

Example

1) Find $L C D$

## Example

$$
\begin{aligned}
& \text { Simplify. } \quad \frac{5}{12 x^{5} y^{3}}+\frac{7}{18 x y^{4}}= \\
& \frac{5}{12 x^{5} y^{3}} \cdot \frac{3 y}{3 y}+\frac{7}{18 x y^{4}} \cdot \frac{2 x^{4}}{2 x^{4}} \\
& =\frac{15 y+14 x^{4}}{36 x^{5} y^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) Find LCD } \\
& 12 x^{5} y^{3}=2 \cdot 2 \cdot 3 \cdot\left(\begin{array}{c}
x^{5} \\
18 x y^{4}=2 \\
y^{3} \\
y^{4}
\end{array}\right. \\
& 36 x^{5} y^{4}=2 \cdot 2 \cdot 3 \cdot 3 \cdot x^{5} \cdot y^{4} \\
& \text { 2) Multiply each tom by what } \\
& \text { is needed, to get the LCD } \\
& \text { 3) NPVs } \quad x \neq 0 \\
& \text { 4) simplify } \quad y \neq 0
\end{aligned}
$$

Example 1 Adding and Subtracting Rational Expressions with Monomial Numerators
Simplify.
b) $\frac{1}{6 x y}-\frac{2}{15 x^{2}}$
a) $\frac{5}{3 x^{2}}+\frac{x}{2}$
$L C D=30 x^{2} y$
a) $\frac{5}{3 x^{2}} \cdot \frac{2}{2}+\frac{x}{2} \cdot \frac{3 x^{2}}{3 x^{2}}$
b) $\frac{1}{6 x y} \cdot \frac{5 x}{5 x}-\frac{2}{15 x} \cdot \frac{2 y}{2 y}$
$6 x y=2 \cdot 3 \cdot\left(\begin{array}{l}x \cdot y \\ 15 x^{2}= \\ 3 \cdot 5 \cdot x^{2}\end{array}\right.$ $=\frac{10+3 x^{3}}{6 x^{2}}$

$$
=\frac{5 x-4 y}{30 x^{2} y}
$$

$$
\begin{aligned}
& x \neq 0 \\
& y \neq 0
\end{aligned}
$$

NPV $x \neq 0$
$L C D=6 x^{2}$


Page 549

Example 2
Adding and Subtracting Rational Expressions with Binomial Numerators

Simplify.
a) $\frac{x-2}{4 x^{2}}+\frac{x+6}{6 x}$
b) $\frac{2 a+1}{2 a^{2} b}-\frac{b-3}{9 a b^{2}}$
please add!
these in!
b) $\frac{2 a+1}{2 a^{2} b}-\frac{b-3}{9 a b^{2}}$
please the in!

$$
\text { a) } \frac{(x-2)^{6}}{4 x^{2}} \cdot \frac{3}{3}+\frac{(x+6)}{6 x} \cdot \frac{2 x}{2 x} \quad \text { LCD }=12 x^{2}
$$

$$
\begin{aligned}
& =\frac{3(x-2)}{12 x^{2}}+\frac{2 x(x+6)}{12 x^{2}} \\
& =\frac{3 x-6+2 x^{2}+12 x}{12 x^{2}} \\
& =\frac{2 x^{2}+15 x-6}{12 x^{2}}
\end{aligned}
$$


b)

$$
\begin{aligned}
& \frac{(2 a+1)}{2 a^{2} b} \cdot \frac{9 b}{9 b}-\frac{(b-3)}{9 a b^{2}} \cdot \frac{2 a}{2 a}
\end{aligned} \quad \text { LCD }=18 a^{2} b^{2}
$$

Cru ps 49, \#2

Remember......never cancel individual terms!
$\begin{aligned} & \text { Cancelling is okay here, } \\ & \text { because " } 3 \text { " is a common factor: }\end{aligned}$
$(3)(y)$$\frac{(4)(x)}{y}$

## Example 3

## Simplifying Rational Expressions

 Involving more than One OperationSimplify.

a) $\frac{4}{3 a^{3}}+\frac{a}{6 a^{2}}-\frac{5}{2 a}$
(b) $\frac{w+3}{4 w^{2}}-\frac{w-1}{3 w}+\frac{w+2}{6}$

$$
\begin{aligned}
& \frac{(\omega+3)}{4 \omega^{2}} \cdot \frac{3}{3}-\frac{(\omega-1)}{3 \omega} \cdot \frac{4 \omega}{4 \omega}+\frac{(\omega+2)}{6} \cdot \frac{2 \omega^{2}}{2 \omega^{2}} \\
= & \frac{3(\omega+3)-4 \omega(\omega-1)+2 \omega^{2}(\omega+2)}{12 \omega^{2}} \\
= & \frac{3 \omega+9}{12 \omega^{2}}+\frac{4 \omega^{2}+4 \omega^{2}+\omega^{3}+4 \omega^{2}}{12 \omega^{3}}+0 \\
= & \frac{2 \omega^{3}+7 \omega^{2}+9}{12 \omega^{2}}
\end{aligned}
$$

## Whenever a denominator can be factored, we need to do it! This will help us to

- Figure out the LCD
- Identify the non-permissible values


## Page 560

## Example 1

Simplify.
a) $\frac{4 n}{n+4}+\frac{3 n}{n-5}$
b) $\frac{1}{x^{2}-36}-\frac{1}{6 x-x^{2}}$

$$
\text { 1) } L C D=(n+4)(n-5)
$$

$$
\text { b) } \frac{1}{x^{2}-36}-\frac{1}{6 x-x^{2}}
$$

a) $\frac{4 n}{(n+4)} \cdot \frac{(n-5)}{(n-5)}+\frac{3 n}{(n-5)} \cdot \frac{(n+4)}{(n+4)}$
$=\frac{4 n(n-5)+3 n(n+4)}{(n+4)(n-5)}$
$=\frac{4 n^{2}-20 n+3 n^{2}+12 n}{(n+4)(n-5)}$

$$
\text { 1) } L C D=(n+4)(n-5)
$$

$$
=\frac{7 n^{2}-8 n}{(n+4)(n-5)}=\frac{n(7 n-8)}{(n+4)(n-5)}
$$

## For next class

- Work on the worktext questions for 6.3


## Revised timeline:

- Thursday, April 6 - sections 6.4-6.5
- Tuesday, April 11 - Pro-D day, no school
- Thursday, April 13 - section 6.6
- Tuesday, April 18 - Chapter 6 Test, sections 7.1-7.2
- Thursday, April 20 - Unit 3 Exam (Chapters 5 and 6)

Tuesday, April 25 - sections 7.2-7.3

- Thursday, April 27 - Chapter 7 Test. Last class

