Class_21 Nov 22 - Log Applications, Rational Functions
Thursday, November 17, 2022 9:25 PM

Tonight's Class:

- 8.4 Log Equations and Applications (continued)
- 9.1 Exploring Rational Functions
- Unit 3 Test (Chapters 7 and 8) on Thursday, Nov 24

Here's a small strategy that makes a big impact on student learning - based on decades of cognitive science research. In scientific lingo, we call it "free recall."

Here's how it works:

1. Pause your lesson, lecture, or activity.
2. Ask students to write down everything they can remember.
3. Continue your lesson, lecture, or activity.

$$
\begin{aligned}
& \text { (1) } \log _{3}\left(2 x^{\frac{1}{19}}+1\right)-\log _{3}(x)=4 \\
& \log _{3}\left(\frac{2 x+1}{x}\right)=4 \\
& \begin{array}{l}
3^{4}=\frac{2 x+1}{x} \\
3 x
\end{array} \quad \begin{aligned}
(x) 81 & =\left(\frac{2 x+1}{x}\right) \frac{(x)}{81 x}=2_{-2 x} x+1
\end{aligned} x=\frac{1}{79} \\
& \text { (2) } 5^{2 x+1}=7^{3 x} \\
& \begin{array}{c}
-2 x \\
79 x^{-2 x}=1
\end{array} \\
& { }^{1} \log ^{\cdots \cdots} 2 x+1=\operatorname{l}^{1} \log 7^{3 x} \\
& \left(2 x+\stackrel{\leftarrow}{\operatorname{Tog}^{5}} 5=3 x \log 7\right. \\
& 2 \times \log 5+1 \log 5=3 \times \log 7 \\
& -2 x \log 5 \log 5=3 x \log 7-2 x \log 5 \\
& \log S=x(3 \log 7-2 \log 5) \\
& \frac{\log S}{(3 \log 7-2 \log S)}=x
\end{aligned}
$$

Earthquakes, Sound, pH
logarithms can be used to solve applications comparing the intensity of earthquakes, the
intensity of sounds, and the acidity or alkalinity of solutions. The Richter scale for
earthquakes, the decibel scale for sounds and the pH scale for solutions are all base 10 .

- smaller reading

For sound questions, divide each decibel reading by 10 .

$$
I=I_{0}(10)^{R-r}\left|I=I_{0}(10)^{\frac{D-d}{10}}\right| I=I_{\substack{\text { Pro-Cale 12-Unit } 3 \\ \text { Page 18 }}}(10)^{P-p}
$$

a) A beaker
of the acid.

$$
\begin{aligned}
p H & =-\log \left[3.5 \times 10^{-6}\right] \\
& =5.5 \text { on } p H \text { scale }
\end{aligned}
$$

b) Solution A has a pH of 5.7. Solution Bi . 1260 mes more acidic than Solution A. Find $p-p$

$$
\begin{aligned}
\sim & =I_{0}(10)^{T-T} \\
1260 \frac{T}{I /} & =I_{I_{0}}^{I_{0}}(10)^{5.7-p} \\
1260 & =10^{5.7-p} \\
\log 1260 & ={ }^{2} \log 10 \\
\log 1260 & =(5.7-p) \log 10{ }^{5.7-p} \\
\log 1260 & =5.7-p \\
-5.7 & -5.7 \\
\log (1260)-5.7 & =-p
\end{aligned}
$$

$$
\begin{aligned}
\log 1260 & =5.7-p \\
-5.7 & -5.7 \\
\log (1260)-5.7 & =-p \\
\frac{-2.599}{-1} \cdots & =\frac{-p}{-1} \quad \begin{array}{r}
p=2.6 \\
\text { on } \\
p+1
\end{array}
\end{aligned}
$$

For you to try...

How many times more intense is an earthquake with magnitude 8.3 than one with magnitude 6.7 ? (Round to nearest whole number.)

$$
I=I_{0}(10)^{8.3-6.7} \quad I \doteq I_{0}(39.81) \quad \begin{gathered}
\text { about } 40 \text { times } \\
\text { as insane }
\end{gathered}
$$

$$
I=I_{0}(10)^{1.6}
$$

2. Bob was in an earthquake of magnitude 7.1. This earthquake was 420 times more intense
than a smaller earthquake that his friend Joan was in. Find the magnitude of the smaller
than a smaller earthquake that his friend Joan was in. Find the magnitude of the smaller
earthquake, correct to one decimal place. $420=10^{7.1-n}$
$\begin{array}{lll}\text { earthquake, correct to one decimal place. } & 420=10^{7.1-r} & \log 420=7.1-r\end{array}$

$$
420 \frac{I_{6}}{F_{0}}=\frac{I_{0}}{I_{0}}(10)^{7.1-r} \quad \begin{array}{ll}
F_{0} 420= & \log 10 \\
\log 420=(7.1-r) \log 10
\end{array}
$$

$$
\begin{aligned}
& \quad 420 \frac{I_{2}}{f_{0}}=\frac{I_{0}}{7_{0}}(10) \quad \log 420=(7.1-r) \log \frac{1}{10} \\
& \text { 3. How many times more intense is the sound of a power saw, } 120 \mathrm{~dB} \text {, than that of a leaf } \\
& \text { rustling, } 10 \mathrm{~dB} \text { ? }
\end{aligned}
$$

$$
\begin{array}{ll}
I=I_{0}(10)^{\frac{120-10}{10}} \\
I=I_{0}(10)^{11} & 10^{11} \text { times as intase }
\end{array}
$$

Two telephones in a home ring at the same time with a loudness of 80 decibels each
What is the decibel rating of the total loudness? (Note that 150 d B is the sound of a jet
engine, from 20 meters away, so the correct answer to this question is NOT 160 dB .)

$$
\begin{array}{lll}
\text { om } 20 \text { meters away, so the correct answer to this question is NOT } 160 \mathrm{~dB} .) & \log 2=\frac{D-80}{10} \\
2 \frac{I_{0}}{I_{0}}=\frac{I_{0}}{I_{0}}(10)^{\frac{D-80}{10}} & \log 2=\sqrt{\log 10^{\frac{D-80}{10}}} & \log 2=\left(\frac{D-80}{10}\right) \log 10
\end{array}
$$

5. Determine the pH of a solution, to the nearest tenth, if they hydrogen ion concentration is $\quad \log \log (2)+80=D$
$\mathrm{pH}=-\log \left[3.4 \times 10^{-4}\right]$

$$
\begin{aligned}
& \pm 3.5 \\
& \mathrm{~s} \text { a } \mathrm{pH} \text { of } 7.5 \text {. Sea water is about } 8 \text { times as alkaline as } \\
& \text { at is the } \mathrm{pH} \text { reading for sea water? }
\end{aligned}
$$

6. Swimming pool water has a pH of 7.5 . Sea water is about
swimming pool water. What is the pH reading for sea water?

Answers:

1. The magnitude 8.3 earthquake is about 40 times more intense
2. Magnitude of the smaller earthquake is 4.5 on Richter scale.
3. The sound of the power saw is about $10^{\prime \prime}$ times as intense as that of a leaf rustling
4. The total loudness is about 83 dB .
5. The solution has a pH of 3.5
6. The pH reading for sea water is about 8.4

$$
\begin{aligned}
& 8 I_{0}=\frac{I_{0}}{I_{0}}(10)^{\frac{p-7.5}{10}} \quad \log 8=\log ^{-\cdots .5}(10)^{\frac{p-25}{10}} \\
& \log 8=\left(\frac{P-7.5}{10}\right) \log 10^{10}= \\
& \log 8=\frac{P-75}{10} \\
& 8=10^{\frac{p-7.5}{10}} \quad \log 8=\left(\frac{p-7.5}{10}\right)
\end{aligned}
$$

Math History

ohm Napier lived from 1550-1617. He developed logarithms. In those days, logarithms were used mostly to do calculations. By using the laws of logarithms many difficult calculations could be simplified - instead of multiplying, one could use logarithms and then add, or instead of dividing, one could subtract. Here's an example:

Suppose you need to divide 217.39 by $\mathbf{2 5 . 4 6 1}$.

Logarithms h
$\log _{10}\left(\frac{217.39}{25.461}\right)$
$\log _{10}($ quotient $)$
$\log _{10}$ (quotient) $-\log 217.39-\log 25.461$ $\log _{10}($ quotient $) \quad=2.337239563-1.405875457$ $=0.931364106$

100	$=$ quotient
8.53815640	-quotient

The famous mathematician, Leonhard Euler, studied the number " e "
Lconhard Euler lived from 1707-1783. He published 530 books and papers during his lifetime. For the last 16 years of his life he was totally blind, but thanks to his phenomenal memory and ability to concentrate, he continued to generate a lot of mathematics. He would write formulas in chalk on large slate for his secretary to copy down. He standardized these notations that fay know

$$
f(x) \text { for function notation }
$$

if for the em

$$
i \text { for the imaginary unit, } \sqrt{-1}
$$

He came up with this formula, $e^{\pi i}+1=0$, relating five of the most important numbers in mathematics
The equation below tells us that as x gets huge, the y-values of the graph get closer and
closer to the value of e : $e=\lim _{\substack{* \\\left(1+\frac{1}{x}\right.}}(1$

Notice that the graph is approaching a horizontal asymptote which is somewhere between 2 and 3. The table of values shows that the y values are getting closer to the actual value of e

Know these 4 log laws. $\quad \log (x y)=\log x+\log y$

1) Product Law:
2) Quotient Law: $\log \left(\frac{A}{B}\right)=\log A-\log B$
3) Power Law: $\log \left(C^{P}\right)=D \log C$
4) Change of Base Law:

$$
\log _{A}(B)=\frac{\log _{c} B}{\log _{c} A}
$$

$$
\log _{3} 17=\frac{\log _{10} 17}{\log _{10} 3}
$$

Pro-Calc 12-Unit 4

Chapter 9: Rational Functions

9.1 Exploring Rational Functions Using Transformations

Rational function are functions that can be written in the form $y=\frac{p(x)}{q(x)}$,
where $p(x)$
and $q(x)$ are polynomials and $q(x) \neq 0$.
Rational Functions with Linear Numerators and Denominators

Pre-Cale $12-$ Unit 4
Page 2
In general, these are the simplest rational function equations, together with their graphs:

Non-permissible value (NPV)	$x=h$ is the NPV
End behavior As $\|x\|$ becomes very large, what does y do?	y-value, approad "K"
Domain	$\{x \mid x \neq h, x \in \mathbb{R}\}$
Range	$\{y \mid y \neq k, \quad y \in \mathbb{R}\}$
Equation of vertical asymptote	$x=h$
Equation of horizontal asymptote	$y=K$

transformations have occurred. Write the mapping notation in the heading of that table.

mapping: $(x, y) \rightarrow(x-3,4 y-5)$
b) Accurately sketch the final transformed function. Include if horizofal and vertical
c) Give the equations of the asymptotes. $\begin{array}{cc}v a & h-a . \\ x=-3 & y=-5\end{array}$
d) Use algebra to find the coordinates of the final graph's x-intercept and y-intercept.
x-int, let $y=0$
$y=\frac{4}{x+3}-5$
$0=\frac{4}{x+3}-5$
$(x+3)(5)=\left(\frac{4}{x+3}\right)(x+3) \quad\left(-\frac{11}{5}, 0\right)$
$5 x+15=4 \quad\left(-2^{1 / s}, 0\right)$
$\frac{5 x}{5}=\frac{-41}{5} \quad x=\frac{-11}{5}$
y-int, let $x=0$

$$
y=\frac{4}{0+3}-5
$$

$$
y=4 / 3-\frac{5}{1}\left(\frac{3}{3}\right)
$$

$$
y=\frac{4}{3}-\frac{15}{3}
$$

$$
y=-11 / 3
$$

$$
\left(0,-\frac{1}{3}\right)
$$

$$
\left(0,-3^{2 / 3}\right)
$$

$$
y=\frac{a}{x-1}+4
$$

Pro-Calc 12 -Unit 4
Page 4
From the asymptotes,
we get:

$$
y=\frac{a^{L}}{x-1}+4
$$

$$
y=\frac{2}{x-1}+4
$$

substitute in

$$
6=\frac{a}{2-1}+4
$$

any point we know that, on the soph

$$
6=\frac{a}{1}+4
$$

Example

Example
Given the rational function $y=\frac{-4 x+3}{x+2}$
Find its NPV s, intercepts, and asymptote equations.

1) NPV: denom $\neq 0$

$$
\begin{array}{r}
x+2 \neq 0 \\
x \neq-2
\end{array}
$$

3) asymptotes
 nom $=0 \quad$ (it! where yo v is!)
$x+2=0 \quad$
4) $x-\ln t$, let $y=0$

$$
\begin{aligned}
&(x+2)(0)=\left(\frac{-4 x+3}{x+2}\right)(x+2) \\
& 0=-4 x+3 \\
&+44 x \\
& \frac{4 x}{4}=\frac{3}{4} \quad(3 / 4,0) \\
& x=3 / 4
\end{aligned} \quad \begin{aligned}
& \frac{\text { honzonted asymptote }}{y=\frac{-4 x+3}{x+2}} \\
& y=\frac{-4(\text { billion })+3}{\text { billion }+2}
\end{aligned}
$$

y-int, let $x=0$
$y=-4 x+3$ $y=\frac{-4 x+3}{x+2}, y=\frac{-4(0)+3}{0+2}=\frac{3}{2}\left\{\begin{array}{c}y=-4 \\ \text { Look at the equation's } \\ \text { terms win the hishast } \\ \text { degree. }\end{array}\right.$ $(0,3 / 2)$ $x=-2$

$$
y=\frac{-4 x+3}{x+2}
$$

$$
\begin{array}{l|l}
x & y \\
\hline
\end{array}
$$

$$
\begin{array}{l|l}
-1 & \frac{-4(-1)+3}{1}=\frac{7}{1}=7 \\
-3 & \frac{-4(-3)+3}{-3+2}=\frac{12+3}{-1}=\frac{15}{-1}
\end{array}
$$

$(0,3 / 2)$
1 degre. Equition: $y=\frac{\text { Coefl (hishtan) }}{\text { coefle (hishtam) }}$

$$
\begin{array}{|c}
\text { Pre-Calc } 12-\text { Unit } 4 \\
\text { Page } 5
\end{array}
$$

Rational Functions with Quadratic Term in Denominator, no other x 'ss

Practice

(9.1) TB p 442: 2ac, 3cd, 4ac, 5ac, 6, 7bd, 8, 9, 12, 16

For next class, Thursday, Nov 24

Complete Chapter 8 Hand-in
Prepare for the Unit 3 Test (Chapters 7-8, including "e" and natural log)
Can use scientific calculator, graphing calculator, and/or Desmos SCIENTIFIC
calculator on this exam.
Study Suggestions:
Complete optional worksheets (posted on website):

- More Solving Practice (Log \& Exponential Equations)
- Applications Set-up \& Solving

Chapter 8 Review

- Unit 3 Practice Test

Equation solving:

$$
\text { - TB p 412: 1, 2ac, 3, 4ac, 5, 6, 7acd, 8abd, 13, } 16
$$

Log Scale questions:

- TB p 401: 13bc, 16bc
- TB p 417: 15, 17
-TB p 419: 6, 15

