Class_23 Nov 29 - Rational Functions

Sunday, November 20, 2022 3:12 PM

Tonight's Class:

- Unit 3 Test return/rewrite sign-up
- (9.2) Analyzing Rational Functions
- (9.3) Rational Equations

EVELOPING & GROWTH MINDSET

INSTEAD OF ...

I'm not good at this. I give up. It's good enough. Ican't make this any better. This is too hard. I made a mistake. I just can't do this. Ill never be that smart. Plan A didn't work. My friend can do it.

TRY THINKING... { What am I missing ???

I'll use a different strategy. Is this really my best work ? I can always improve. This may take some time. Mistakes help me learn. I'm going to train my brain. I'll learn how to do this. There's always a Plan B. I'll learn from them.

The Power of the GROWTH MINDSET says, 'I believe in you, give it a try, you just haven't gotten it, YET VV You will V

Whiteboards - rational functions so far

Example (TB p 445, #18)

Two stores rent bikes. The first store charges a fixed fee of \$20 plus \$4/h, and the second store charges a fixed fee of \$10 plus \$5/h.

a) Write equations for the average cost per hour for each store as a function of the rental time in hours.

b) Shown below are the graphs of the two equations from part (a). Which store is the better choice? Explain.

<u>Practice</u> (9.1) TB p 442: 2ac, 3cd, 4ac, 5ac, 6, 7bd, 8, 9, 12, 16

Watch the YouTube Videos for these two sections!

Section 9.2 Analyzing Rational Functions https://www.youtube.com/watch?v=rbifC0AmDuM

Section 9.3 Solving Rational Equations https://www.youtube.com/watch?v=xjrG2sE3I5A

> Pre-Calc 12 – Unit 4 Page 7

9.2 Analyzing Rational Functions

Some rational function equations are more complicated. To analyze and graph them, we *factor and simplify* their equations.

Example

Consider the rational function: $f(x) = \frac{x^2 + 7x + 12}{x + 4}$

a) Factor and simplify the function's equation.

b) NPV(non-permissible value) = How does the graph behave near its NPV?

Point of Discontinuity (POD) – an ordered pair where the graph of a function does not exist. It occurs whenever the equation's numerator and denominator have a common factor that includes a variable.

Example

a) Complete the table, with the characteristics of the two graphs.

	$f(x) = \frac{x^2 + 2x - 8}{x - 2}$	$g(x) = \frac{x^2 + 6x + 8}{x - 2}$
Non-permissible value(s)		
Simplified form of equation		
Coordinates of <i>x</i> - and <i>y</i> -intercepts		

b) Graph these rational functions (same as the ones above) using technology. Below each equation draw a rough sketch of its graph.

$$f(x) = \frac{x^2 + 2x - 8}{x - 2}$$

$$g(x) = \frac{x^2 + 6x + 8}{x - 2}$$

- a point of discontinuity
- a vertical asymptote?

- Horizontal asymptotes questions #1 and #2, we can get the h.a. equations from remembering the two base graphs we learned
 Horizontal asymptotes questions #3-6, these equations are not in the form of the base graphs, but we can get the h.a. equations from looking at the graphs
 Horizontal asymptotes questions #7 remember how to get the
 - h.a. equation when the equations are more unusual?

Key Ideas for Rational Function Graphs

1) Horizontal Asymptotes

Find the degree of the numerator and denominator.

Numerator degree < Denominator degree <i>horizontal asymptote equation:</i>	<i>y</i> = 0
Numerator degree = Denominator degree <i>horizontal asymptote equation:</i>	
$y = -\frac{1}{2}$	leading coefficient of num eading coefficient of denom
Numerator degree > Denominator degree Graph will have a <i>slant asympto</i>	te

2) NPVs, PODs, and vertical asymptotes

Factor numerator and denominator completely.

- Set *each factor of the denominator* = θ , to get all NPVs.
 - Is there a factor that cancels with a factor in the numerator? It gives the *x*-value of a POD.
 - Is there a factor that doesn't cancel with a numerator factor? It gives the location of a vertical asymptote.

3) Intercepts

- *y*-intercepts substitute *x* = 0 into the function (either the original or the simplified form) and solve for *y*
- *x*-intercepts set each factor of the simplified numerator = 0 and solve for *x*

4) Sketch

- Plot all *x*-intercepts and *y*-intercepts
- Show points of discontinuity (PODs) as "holes", using an open circle
- Show all asymptotes as dotted lines.
- Find more points on the graph, as needed, by substituting into its equation.
- Make sure graph does not cross any vertical asymptotes.

7	0	tr	v:
	•		× •

Original Equation	Factored form of equation	 List all NPVs, and for each one identify if it gives a POD or a vertical asymptote. Find the (<i>x</i>, <i>y</i>) coordinates of each POD . Find the equation of each vertical asymptote. 	Horizontal asymptote equation or say "Slant"
$y = \frac{2x + 10}{x^2 + 2x - 15}$			
$y = \frac{2x^2 + 7x + 6}{x^2 - 2x - 8}$			
$y = \frac{x^2 + 3x - 4}{x - 1}$			

Characteristics of Rational Functions - group worksheet

With and an in the large second large to the large the formation in	$x^{2} + 3x - 10$
Without using technology, accurately sketch the function's graph:	$y = \frac{1}{y^2 - 4}$

Give the values of the graph's:

- NPVs
- asymptote equations
- coordinates of PODs
- x- and y-intercepts

	10	
	9	
	8	
	7	-
	6	
	5	-
	4	_
	2	
	1	
-10 -9 -8 -7 -6 -5 -4 -3 -2	-1, 1 2 3 4 5 6 7 8 9	1
		-
	-2	-
	-3	-
	-4	_
	-5	
	-6	+
	-6	
	-6	
	-6	

Example (TB page 453, #7a) Write the equation of the pictured rational function.

9.3 Connecting Graphs and Rational Equations

To solve rational equations algebraically:

- Determine the value of all non-permissible values. List them.
- Find the least-common denominator (LCD).
- Multiply each term in the equation by the LCD, to eliminate fractions
- · Solve this simpler equation. If a solution is an NPV, reject it.

Example

a) Solve algebraically:

$$\frac{3}{x} = 1 + \frac{x - 13}{6}$$

b) Verify the solution graphically.

SKIPPING THIS

To try:

1a) Find the roots of this rational equation, algebraically:

$$x + \frac{6}{x+2} - 5 = 0$$

b) Verify, graphically.SKIPPING THIS

b) Verify the solution graphically.

For next class, Thursday, December 1

- Complete the Chapter 9 Hand-in
- Do more questions from tonight's in-class group worksheets, in the areas where you know you need more practice. (Each worksheet is posted, along with full solutions)

Practice

- (9.1) TB p 442: 2ac, 3cd, 4ac, 5ac, 6, 7bd, 8, 9, 12, 16
- (9.2) TB p 452: 4-7, 8ac, 11, 14
- (9.3) TB p 465: 1, 2, 3-6(ac), 9, 11

Coming up

- Tuesday, Dec 6 Chapter 9 Test
- Thursday, Dec 8 Unit 4 Test
- Tuesday, Dec 13 optional class, for Unit 4 rewrites