Tonight's Class:

- Unit 3 Test return/rewrite sign-up
- (9.2) Analyzing Rational Functions
- (9.3) Rational Equations

Whiteboards - rational functions so far

Example (TB p 445, \#18)
Two stores rent bikes. The first store charges a fixed fee of $\$ 20$ plus $\$ 4 / \mathrm{h}$, and the second store charges a fixed fee of $\$ 10$ plus $\$ 5 / \mathrm{h}$.
a) Write equations for the average cost per hour for each store as a function of the rental time in hours.

$$
x=\text { \# of hours bike is rented }
$$

Avenge cost per hor

$$
\begin{aligned}
& =\frac{t+t / 1 \text { cost }}{t \text { of hoars }} \\
\text { Store 1 : Avenge cost } & =\frac{\$ 20+4 x}{x} \\
\text { Store 2 }: ~ A v e r a g e ~ c o s t ~ & =\frac{{ }^{\$ 1} 10+5 x}{x}
\end{aligned}
$$

b) Shown below are the graphs of the two equations from part (a). Which store is the better choice? Explain.

For less than
10 hours,
Store 2 costs less

$$
\begin{array}{c|c}
\text { A+ 10 hows, } & \text { More the 10 hows, } \\
\text { same cost } & \text { Store 1 } \\
\text { at either store } & \text { costs less }
\end{array}
$$

Practice

Watch the YouTube Videos for these two sections!

Section 9.2 Analyzing Rational Functions
 https://www.youtube.com/watch?v=rbifCOAmDuM

Section 9.3 Solving Rational Equations https://www.youtube.com/watch?v=xjrG2sE315A

9.2 Analyzing Rational Functions

Some rational function equations are more complicated. To analyze and graph them, we factor and simplify their equations.

Example

Consider the rational function: $f(x)=\frac{x^{2}+7 x+12}{x+4}$
a) Factor and simplify the function's equation.
b) $\operatorname{NPV}($ non-permissible value $)=$ How does the graph behave near its NPV?

Point of Discontinuity (POD) - an ordered pair where the graph of a function does not exist. It occurs whenever the equation's numerator and denominator have a common factor that includes a variable.

Example

a) Complete the table, with the characteristics of the two graphs.

	$f(x)=\frac{x^{2}+2 x-8}{x-2}$	$g(x)=\frac{x^{2}+6 x+8}{x-2}$
Non-permissible value(s)		
Simplified form of equation		
Coordinates of x - and y - intercepts		

b) Graph these rational functions (same as the ones above) using technology. Below each equation draw a rough sketch of its graph.

$$
f(x)=\frac{x^{2}+2 x-8}{x-2} \quad g(x)=\frac{x^{2}+6 x+8}{x-2}
$$

When does a rational function have

- a point of discontinuity
- a vertical asymptote?
- Horizontal asymptotes questions \#1 and \#2, we can get the h.a. equations from remembering the two base graphs we learned
- Horizontal asymptotes questions \#3-6, these equations are not in the form of the base graphs, but we can get the h.a. equations from looking at the graphs
- Horizontal asymptotes questions \#7 - remember how to get the h.a. equation when the equations are more unusual?

Key Ideas for Rational Function Graphs

1) Horizontal Asymptotes

Find the degree of the numerator and denominator.
Numerator degree $<$ Denominator degree
horizontal asymptote equation: $\quad y=0$
Numerator degree $=$ Denominator degree
horizontal asymptote equation:

$$
y=\frac{\text { leading coefficient of num }}{\text { leading coefficient of denom }}
$$

Numerator degree $>$ Denominator degree Graph will have a slant asymptote
2) NPVs, PODs, and vertical asymptotes

Factor numerator and denominator completely.

- Set each factor of the denominator $=\mathbf{0}$, to get all NPVs.
- Is there a factor that cancels with a factor in the numerator? It gives the x-value of a POD.
- Is there a factor that doesn't cancel with a numerator factor? It gives the location of a vertical asymptote.

3) Intercepts

- y-intercepts - substitute $x=0$ into the function (either the original or the simplified form) and solve for y
- \boldsymbol{x}-intercepts - set each factor of the simplified numerator $=0$ and solve for x

4) Sketch

- Plot all x-intercepts and y-intercepts
- Show points of discontinuity (PODs) as "holes", using an open circle
- Show all asymptotes as dotted lines.
- Find more points on the graph, as needed, by substituting into its equation.
- Make sure graph does not cross any vertical asymptotes.

To try:

Original Equation	Factored form of equation	List all NPVs, and for each one identify if it gives a POD or a vertical asymptote. - Find the (x, y) coordinates of each POD . - Find the equation of each vertical asymptote.	Horizontal asymptote equation or say "Slant"
$y=\frac{2 x+10}{x^{2}+2 x-15}$			
$y=\frac{2 x^{2}+7 x+6}{x^{2}-2 x-8}$			
$y=\frac{x^{2}+3 x-4}{x-1}$			

Without using technology, accurately sketch the function's graph: $y=\frac{x^{2}+3 x-10}{x^{2}-4}$
Give the values of the graph's:

- NPVs
- asymptote equations
- coordinates of PODs
- x - and y-intercepts

Example (TB page 453, \#7a)
Write the equation of the pictured rational function.

9.3 Connecting Graphs and Rational Equations

To solve rational equations algebraically:

- Determine the value of all non-permissible values. List them.
- Find the least-common denominator (LCD).
- Multiply each term in the equation by the LCD, to eliminate fractions
- Solve this simpler equation. If a solution is an NPV, reject it.

Example

a) Solve algebraically:

$$
\frac{3}{x}=1+\frac{x-13}{6}
$$

b) Verify the solution graphically.

SKIPPING THIS

There are two ways to solve graphically.

1) Graph $Y_{1}=$ LHS of equation

Graph $Y_{2}=$ RHS of equation.
Find the x-values where the 2 graphs intersect.
OR
2) Collect all terms of the original equation on one side of the equals sign.
Graph this equation.
Find all of this graph's x-intercepts (zeroes)

To try:

1a) Find the roots of this rational equation, algebraically:

$$
x+\frac{6}{x+2}-5=0
$$

b) Verify, graphically.SKIPPING THIS

2a) Find the roots of this rational equation, algebraically: $1+\frac{2}{x}=\frac{x}{x+3}$
b) Verify the solution graphically.

For next class, Thursday, December 1

- Complete the Chapter 9 Hand-in
- Do more questions from tonight's in-class group worksheets, in the areas where you know you need more practice. (Each worksheet is posted, along with full solutions)

Practice

(9.1) TB p 442: 2ac, 3cd, 4ac, 5ac, 6, 7bd, 8, 9, 12, 16
(9.2) TB p 452: 4-7, 8ac, 11, 14
(9.3) ТВ p 465: 1, 2, 3-6(ac), 9, 11

Coming up

- Tuesday, Dec 6 - Chapter 9 Test
- Thursday, Dec 8 - Unit 4 Test
- Tuesday, Dec 13 - optional class, for Unit 4 rewrites

