Plan For Todays

1. Question about anything from last class (9.2-9.3)?
2. Start Topic 10: Geometric Sequences \& Series *. G. 1 Geometric Sequences

* G. 2 Geometric Series
* G. 3 Infinite Geometric Series
\% G. 4 Sigma Notation

3. Work on practice questions in handouts.

Plan Going Forwards

1. Practice working through G. 1 to G. 2 questions.
2. You will review these topics and do G. 3 tomorrow. Plan is to finish G. 4 on Monday and review for Test 7.

- chaprer 9 assignment due on rivorsdar. Jun 15TH
* TOPIE 10 (G) ASSIGNMENT DUE ON TUESDAY. JUNE 2OTH
- TEST 7 ON 9.3-10. 4 ON TUESDAR. JUNE 2OTH

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca

G. 1 Geometric Sequences and Series

A sequence of numbers is a list of numbers in a specific order. They are referred to as the terms in the sequence. What is the next term for each sequence below?

$$
\begin{array}{lll}
1,2,4,8,16,32,64,128 & 1,4,9,16,25,36,49,64 \\
5,10,15,20,25,30,35 & 1,1,2,3,5,8,13,21,34
\end{array} \quad \text { Fibonacci }
$$

There are many types of sequences. The ones shown below are all the same kind. What do they have in common?

$$
\begin{aligned}
& -5,15,-45,135 \ldots \times-3 \\
& -3,-12,-48,-192 \ldots \times 4
\end{aligned}
$$

the
grecian ofoternin the sequence
Geometric sequences are created by multiplying each term after the first one by a constant number which is called the common ratio. In formulas, they use the letter r to stand for the common ratio.

> How can you figure out the value of r ?
> Divide amy form by the one immediately
> before it, in the sequence.

We use the notation t_{n} to identify terms in a sequence. In the sequence beginning $3_{2} \mathbf{Z}_{1} 1_{2}, 24,48$

$$
\begin{aligned}
& t_{3}=12 \text {, because } 12 \text { is the third germ of the sequence } \\
& t_{5}=48 \text {, because } 48 \text { is the fifth term of the sequence } \\
& \qquad t_{4}=24
\end{aligned}
$$

The first term in the sequence could be referred to correctly as t_{1}, but often we refer to it as " a ". In the sequence $3,6,12,24,48 \ldots$ we say $a=3$.

To try:

Find these terms, for the sequence that begins:
$3,6,12,24,48 \%$
a) $t_{6}=96=3(2)^{5}=96$
b) $t=384=3\left(2^{7}\right)=384$
c) $t_{26}=3(\underbrace{2 \times 2 \times \ldots x}_{25 \text { times }})=3(2)^{25}=100,663,296$

For any geometric sequence the $n^{\text {th }}$ term, t_{n}, is given by the formula:

$$
\begin{aligned}
t_{n}=a r^{n-1} \text { where } a & =\text { first term } \\
r & =\text { common ratio, } r \neq 0 \\
n & =\text { the term number }
\end{aligned}
$$

To try:

1. Which sequences are geometric? If a sequence is geometric, state its common ratio, r, and give the next 3 terms of the sequence.

$$
\begin{array}{lr}
\text { b) } 2,-4,8,-16,32 \ldots & 32 x-2= \\
r=-64, \\
r=\frac{-4}{2}=-2 & -28, \\
\text { d) } x, 5 x^{2}, 25 x^{3} \ldots & 125 x^{4}, 625 x^{5}, 3125 x^{6} \\
r=\frac{5 x^{2}}{x} & \\
r=5 x
\end{array}
$$

a) $5,10,15,20 \ldots$

not geometric
c) $\begin{aligned} 8,2,1 / 2 & , \ldots \quad \frac{1}{2} \times \frac{1}{4}= \\ r=\frac{2}{8}=\frac{1}{4} & \frac{1}{32} \\ & \frac{1}{128}\end{aligned}$
2. For each geometric sequence, find the requested value.
a) $8,2,1 / 2, \ldots$ Write the defining statement for this sequence in the form $t_{n}=a r^{n-1}$

$$
\begin{array}{lll}
1-\overline{8}=\overline{4} & \overline{32} & r=\frac{-10}{x} \\
& \frac{1}{128} & r=5 x
\end{array}
$$

2. For each geometric sequence, find the requested value. a) $8,2,1 / 2, \ldots$ Write the defining statement for this sequence in the form $t_{n}=a r^{n}$

$$
t_{n}=a r^{n-1} \quad t_{n}=8\left(\frac{1}{4}\right)^{n-1} \quad n_{0}+2^{n-1}
$$

b) $20,10,5 \ldots$ find $t_{6} t_{6}=20\left(\frac{1}{2}\right)^{5}=\frac{20}{10}\left(\frac{1}{32}\right)=\frac{20}{32}$ or $\frac{5}{8}$ or 0.625
$\begin{aligned} & \text { c) } 21,-42,84 \ldots \text { find } t_{10} \\ & r=\frac{-42}{21}=-2\end{aligned} \quad t_{10}=21(-2)^{9}=-10752$

3a) Consider the geometric sequence $2,-6,18,-54, \ldots, 13122$
13122 is a term in this sequence. What term number is it? $\quad r=\frac{-6}{2}=-3$

$$
\begin{aligned}
t_{n} & =a r^{n-1} \\
\frac{13122}{2} & =\frac{2}{2}(-3)^{n-1}
\end{aligned}\left\{\begin{array}{l}
\text { 6s61 }=(-3)^{n-1} \\
(-3)^{8}=(-3)^{n-1}
\end{array} \quad \Rightarrow 8=n-1\right.
$$

b) Consider the geometric sequence $1.25,5,20 \ldots$

327680 is a term in this sequence. What term number is it? (Don't bote-force it!)

$$
\begin{array}{l|l}
r=\frac{20}{5} \\
r=4
\end{array} \quad \begin{aligned}
& \frac{327680}{1.25}=\frac{(1.25)}{1.25}(4)^{n-1} \\
& \\
& \text { or } \\
& 4^{9}=4^{n-1} \\
& \Rightarrow \begin{array}{c}
9=n-1 \\
n=10 \\
n
\end{array} \\
&
\end{aligned}
$$

$$
4 \approx 12 C \int_{36} \curvearrowleft 108 \cdot \frac{324}{t_{s}}-\overbrace{-}^{r} \overbrace{8748}^{t_{8}}
$$

$$
\begin{aligned}
& \text { Pre-Calc } 12 \text {-Unit } 4 \\
& \text { Page } 17
\end{aligned}
$$

4a) In a geometric sequence, $t_{5}=324$ and $t_{8}=8748$. Find the first two terms.

$$
\begin{aligned}
\frac{324}{324}\left(r^{3}\right) & =\frac{8748}{324} \quad \text { Use } r \text {, and dina to bocturds: } \\
r^{3} & =27
\end{aligned} \quad \begin{aligned}
t_{1} \text { or } a & =4 \\
t_{2} & =12
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { nit } 4 \\
\text { Another way p doit: } & t_{n}=a r^{n-1} \\
t_{8}=8748 & t_{8}=a r^{7}=8748 \\
t_{5}=324 & t_{5}=a r^{4}=324
\end{array}
\end{array}
$$

6. Between the Canadian censuses in 2001 and 2006, the number of people who could speak in Cree had increased by 7\%. In 2006, 87285 people could converse in Cree. Assume the 5 -year increase continues to be 7%. To the nearest hundred, how many
people will be able to converse in Cree in 2036?

$$
\begin{aligned}
& t_{n}=a r^{n-1} \\
& t_{7}=87285(1.07)^{6} \\
& =130991.2488 \\
& \therefore 13100 \text { people }
\end{aligned}
$$

$$
\begin{aligned}
& 36 \rightarrow 2.25 \rightarrow t_{t_{2}} \rightarrow 2.2 \\
& t_{2} \quad 18 r^{3}=2.25 \quad t_{q}=a r^{8} \\
& \frac{18 r^{3}}{18}=\frac{2.25}{18} \\
& \sqrt[3]{r^{3}}=\sqrt[3]{0.125} \\
& r=0.5 \text { or } \frac{1}{2} \\
& \begin{aligned}
t_{q} & =a r^{8} \\
& =36\left(\frac{1}{2}\right)^{8}
\end{aligned} \\
& =0.140625=\frac{9}{64}
\end{aligned}
$$

Pre-Calc 12 - Unit 4 Page 18

G. 2 Geometric Series

A chessboard has 64 squares on it. Legend has it that the inventor of the game asked for the following reward from the King: "One grain of wheat on the first square, two on the second, 4 on the third, and so on, doubling the amount on every square until the board is complete."

How many grains of wheat did the inventor ask for?

$$
\underbrace{1+2+4+8+\cdots+2^{63}}_{64 \text { terms }}
$$

$$
t_{64}=1(2)^{63}
$$

\square sum
A geometric series is the sum of the first n terms of a geometric sequence, written a
 n terms
S_{3}) - is the sum of the first 3 terms of a geometric sequence: $S_{3}=t_{1}+t_{2}+t_{3}$ For the sequence above, $S_{3}=1+2+4=7$
S_{4} is the sum of the first 4 terms of a geometric sequence: $S_{4}=t_{1}+t_{2}+t_{3}+t_{4}$ For the chessboard sequence, $S_{4}=1+2+4+8=15$

For this question, we need to know the value of S_{64}

Here's a way to find the value of a sum of \boldsymbol{n} terms for any geometric series, S_{n}

$$
\begin{aligned}
S_{n} & =a+a r+a r^{2}+\not r^{\beta}+\ldots+a \not r^{\prime 2}+a r^{n-1} \\
-r S_{n} & =\not r^{\prime}+a r^{2}+a r^{\beta}+\ldots+a r^{k-2}+a y^{n-1}+a r^{n} \\
S_{n}-r S_{n} & =a-a r^{n}
\end{aligned}
$$

Subtracting, we get: $\quad S_{n}-r S_{n}=a-a r^{n}$
Factor:

$$
S_{n}(1-r)=a\left(1-r^{n}\right)
$$

Divide

$$
S_{n}=\frac{a\left(1-r^{\prime \prime}\right)}{1-r}
$$

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

$1+2+4+\cdots$

$$
S_{15}=\frac{1\left(1-2^{15}\right)}{1-2}
$$

$$
r=2
$$

$$
=\frac{\left(1-2^{15}\right)}{-1}=\frac{-32767}{-1}
$$

$$
\begin{aligned}
S_{64}=\frac{1\left(1-2^{64}\right)}{1-2} & =1.844 \times 10^{19}(\text { quantixion! }) \\
& -18.446,744,073,709,55
\end{aligned}
$$

$$
=32767
$$

$$
=18,446,744,073,709,551,615
$$

$$
\begin{aligned}
& \text { To Try: } \quad 巾^{a=4} \quad r=\frac{12}{4}=3 \quad n=9 \\
& \text { 1. Given the geometric series: } 4+12+36+\ldots \text { find the sum of the first } 9 \text { terms. } \\
& S_{q}=\frac{4\left(1-3^{9}\right)}{1-3}=39364 \\
& \text { 2. The sum of the first } 12 \text { terms of a geometric series is } \underbrace{24} 570 \text {. The common ratio is }-2 \text {. } \quad r \quad n=12 \\
& \text { "a } \\
& 24570=\frac{a\left(1-(-2)^{12}\right)^{S_{12}}}{1-(-2)}\left\{\begin{aligned}
24570 & =\frac{a(1-4096)}{3} \\
3 \times 24570 & =\frac{a(-4095)}{3}
\end{aligned}\right. \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \begin{array}{l}
\text { aa) Find the sum of this series } 0.025+0.075+\ldots+54.675 \\
S_{n}=\frac{a-l r}{1-r} \\
\text { b) Use an algebraic method to determine how many terms there are in the above sum. }
\end{array} \\
& \text { b) Use an algebraic method to determine how many terms there are in the above sum. } \\
& t_{n}=\operatorname{ar}^{n-1} \quad 2187=3^{n-1} \\
& \begin{array}{lll}
t_{n}-a^{\prime} & 2187 & =3 \\
54.675 & =\frac{0.025}{0.025}(3)^{n-1} & 3^{7}
\end{array} \quad=3^{n-1} \quad \Rightarrow 7=n-1 \\
& \text { 4. An oil well produced } 0000 \text { barrels of oil in the first month of production. Each month } \\
& \text { production is reduced by } 10 \% \text {. What is the total amount f barrels of oil produced by this } \\
& \text { oil well in its first two years of production? } \\
& 10000,10000(0.9), \quad r=0.9 \\
& S_{24}=\frac{1000\left(1-0.9^{24}\right)}{1-0.9} \\
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& =92023 \text { barrels }
\end{aligned}
$$

G Practice
(W) C_25 More Sequences and Series Practice

Sequences and Series - more practice (14 questions)

1. Is the following sequence geometric?
a) $10,15,22.5,33.75, \ldots$
b) $7,14,21,28, \ldots$
2. Find the common ratio, r, of each geometric sequence
a) $-1,-5,-25,-125, \ldots$
b) $-200,100,-50,-25, \ldots$
3. Find the next three terms of the following sequence
a) 386561, 55223, 7889, \qquad , , -_
b) $-\frac{1}{5},-\frac{1}{15},-\frac{1}{45}$, \qquad , _, ,
4. Find a formula for the nth term of each geometric sequence.
a) $a=4, t_{13}=16384$
b) $t_{3}=5, t_{6}=135$
5. The seventh term of a geometric sequence is 1215 and the fourth term is 45 . Find the common ratio, then find the value of the ninth term.
6. A population of rabbits is growing at a rate of 8% a year. If there are 160 rabbits in the initial population, create a general term equation, t_{n}, describing this sequence. Use it to find the number of rabbits after 6 years.
7. Find the sum of the following geometric series. If necessary, round to 2 decimal places.
a) $729-243+81-27+\ldots$ (10 terms)
b) $7+14+28+56+\ldots+7168$
c) $\sum_{n=4}^{10} 5(2)^{n}$
8. Find the common ratio of a geometric series with a first term of 38 and a sum to infinity of 76 .
9. Find the general term, t_{n}, for the described sequences:
a) geometric, beginning: $-2,1,-\frac{1}{2}, \frac{1}{4}, .$.
b) geometric, with $t_{3}=75$ and $r=5$
c) geometric, with $t_{4}=5$ and $r=\frac{1}{4}$
10. Find the $25^{\text {th }}$ term of the following geometric sequence: $2,2 \sqrt{3}, 6, \ldots$
11. List the first five terms of the geometric sequence with $t_{3}=8$ and $r=-\frac{1}{2}$.
12. Find the requested sum for each geometric sequence.
a) Find S_{12} correct to 2 decimal places, for $a=5, r=\frac{2}{3}$
b) Find S_{9} for $a=-3$ and $r=2$
c) Find the sum of the first 11 terms of the geometric series that begins $7-14+28-\ldots$
13. Determine the sum, if possible:
a) $\sum_{i=1}^{\infty}-4\left(\frac{4}{5}\right)^{i}$
b) $\sum_{i=1}^{6} 2(3)^{i}$
c) $\sum_{i=1}^{\infty} 5\left(\frac{4}{3}\right)^{i}$
d) $\sum_{i=1}^{\infty} 5\left(\frac{2}{3}\right)^{i}$
14. A helium balloon rises 80 meters the first minute after it is released. Each minute after that it rises 15% less than the previous minute. How high does the balloon rise in total?
