Class_25 June 15 - Sequences and Series, Infinite Series

Wednesday, June 14, 2023 4:28 PM

Tonight's Class:
e Chapter 9 Hand-in due today

e Sequences and Series - Should we go through anything here? (G.1-G.2)
e Infinite Series (G.3)

Notes package, page 17:

5, #. Between the Canadian censuses mn 2001 and 2006, the number of people who could

speak in Cree had increased by 7%. In 2006, 87 285 people could converse in Cree.

Assume the 5-year increase continues to be 7% To the nearest hundred, how many
people wall be able to converse 1 Cree 1n 20367
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G. 3 Infinite Geometric Series
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Consider the series illustrated above: — = ..
2 4 8 16
e  What do you notice about the terms? anre 3&"'{'"} Sme I(V

e What do you think the sum is?
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An infinite geometric series is one with an infinite number of terms — there is no last
term.

With an infinite series, we will find that either:
Successive terms get smaller and smaller and smaller.
e The common ratia7, has a value between — @ — <L re (

e This type of series is called convergent.

e  We CAN find the sum by using the formula:

Successive terms stay the same size, or continue to get larger and larger
e The common ratio, r, satisfies either » >1 or r < —1.

e This type of series is called divergent.
¢  We CANNOT find the sum of this series. We sa

A geometric series has a finite sum, or converges, only when —1<r <1

a
l_r,onlytrueif-l<r<1

S =

If you have an infinite geometric series where r =1 or r <—1, it will not have a finite
sum, it will diverge.
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To Try:
1. Determine whether each infinite geometric series has a finite sum. If it does have a eL’ the
finite sum, find its value. Svm
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b) The sum of an infinite geometric series is 24/7 and r =—— l~1nd the first term, a.
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c¢) An infinite geometric series has the term- and 1, =4. Determme the sum of the

infinite series. et _—7
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4. A ball is dropped from a hc1 ht of 15 meters and bounces to 60% of the previous
height. How far has the bal lr'wi.lc when it comes to rmf’
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Optional worksheet:
More Sequences & Series Practice

Coming up
- Tuesday, June 20

o Test7(9.3, G.1-G.4)
o Chapter G (10) Hand-in due
- Wednesday, June 21
o Rewrite day (optional, can do up to 2 test rewrites)
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