Annalyn 9.2 Notes

$$
y=\frac{1}{x} \quad y=\frac{a}{x-h}+k
$$

9.2 Analyzing Rational Functions

Some rational function equations are more complicated. To analyze and graph them, we factor and simplify their equations.

Example

Consider the rational function: $f(x)=\frac{x^{2}+7 x+12^{\downarrow}}{x+4}$
a) Factor and simplify the function's equation $f(x)=\frac{(x+3)(x+4)}{x+4} x=-4 \mathrm{NPV}$
b) $\operatorname{NPV}($ non-permissible value $)=-4$

$$
\{f(x)=x+3, \underbrace{\text { where } x \neq-4}_{\text {include this }}
$$

\rightarrow How does the graph behave near its NPV?
very smoothly. Not like the behavior near NPVs that create asymptotes.

Point of Discontinuity (POD) - an ordered pair where the graph of a function does not exist. It occurs whenever the equation's numerator and denominator have a common factor that includes a variable.

$$
(x, y)
$$

$$
f(x)=x+3
$$

ply in the NPV value, $x=-4$, into this:

$$
\begin{aligned}
& \text { (y) } \\
& \text { To get the } y \text {-value of a POD, we sulutitits } \\
& \text { the virile (the NPV) into the reduced }
\end{aligned}
$$ the x-value (the NPV) into the reduced,

$$
=-4+3=-1
$$ simplified version of the function's equation.

Example

a) Complete the table, with the characteristics of the two graphs.

b) Graph these rational functions (same as the ones above) using technology. Below each equation draw a rough sketch of its graph.
$\begin{gathered}x+4=0 \\ x=-4 \\ (-4,0)\end{gathered}\left\{\begin{array}{l}\frac{y-m t}{y}=\frac{(x+2)(x+4)}{x-2} \\ y=\frac{(0+2)(0+4)}{0-2} \\ y=\frac{8}{-2}=-4 \\ (0,-4)\end{array}\right.$
$f(x)=\frac{x^{2}+2 x-8}{x-2}, \quad \begin{aligned} f(x) & =x+4, \\ \text { where } x & \neq 2\end{aligned}$

$g(x)=\frac{x^{2}+6 x+8}{x^{0}-2}=\frac{(x+2)(x+4)}{x-2}$

$$
-\begin{array}{c|c}
x & y \tag{2,6}\\
\hline-10 & -4 \\
-6 & -1 \\
-4 & 0 \\
-3 & 0.2 \\
-2 & 0 \\
-1 & -1 \\
0 & -4 \\
1 & -15 \\
\hline 4 & 24 \\
6 & 20 \\
8 & 20 \\
14 & 24
\end{array}
$$

$$
=2+4 \quad(2,6)
$$

$$
=6
$$

[^0]Whiteboards - PODs and horizontal asymptotes

- Horizontal asymptotes questions \#1 and \#2, we can get the h.a. equations from remembering the two base graphs we learned
- Horizontal asymptotes questions \#3-6, these equations are not in the form of the base graphs, but we can get the h.a. equations from looking at the graphs
- Horizontal asymptotes questions \#7 - how can we get the h.a. equation when the original function equations are more unusual?

Key Ideas for Rational Function Graphs

1) Horizontal Asymptotes

Find the degree of the numerator and denominator.

> example

| Numerator degree $<$ Denominator degree
 horizontal asymptote equation: |
| :---: |$\quad y=0$

*

Numerator degree $>$ Denominator degree
Graph will have a slant asymptote

$$
\begin{aligned}
& y=\frac{x^{1}}{3 x^{2}+4} \quad \text { ha. } \\
& y=\frac{5 x^{2}-7}{2 x^{2}+3}
\end{aligned}
$$

h.a $y=\frac{5}{2}$
$y=\frac{4 x^{2}-9}{2 x^{2}+3} \quad \begin{gathered}\text { slant } \\ \text { asymptote }\end{gathered}$
2) NPVs, PODs, and vertical asymptotes

Factor numerator and denominator completely.

- Set each factor of the denominator $=0$, to get all NPVs.
- Is there a factor that cancels with a factor in the numerator? It gives the x-value of a POD.
- Is there a factor that doesn't cancel with a numerator factor? It gives the location of a vertical asymptote.

3) Intercepts

- y-intercepts - substitute $x=0$ into the function (either the original or the simplified form) and solve for y
- x-intercepts - set each factor of the simplified numerator $=0$ and solve for x

$$
\begin{gathered}
\text { let } y=0 \text { and solve } \\
\text { for } x
\end{gathered}
$$

4) Sketch

- Plot all x-intercepts and y-intercepts
- Show points of discontinuity (PODs) as "holes", using an open circle
- Show all asymptotes as dotted lines.
- Find more points on the graph, as needed, by substituting into its equation.
- Make sure graph does not cross any vertical asymptotes.

To try:

Original Equation	Factored form of equation	List all NPVs, and for each one identify if it gives a POD or a vertical asymptote. - Find the (x, y) coordinates of each POD . - Find the equation of each vertical asymptote.	Horizontal asymptote equation or say "Slant"
$y=\frac{2 x^{1}+10}{x^{2}+2 x-15}$	$\begin{aligned} & y=\frac{2(x+5)}{(x-3)(x+5)} \\ & y=\frac{2}{x-3} \end{aligned}$ wher $x \neq-5$	$\begin{cases}x=3 & \text { v.a. } \\ x=-5 & \text { POD }\end{cases}$ Plug in $x=-5$: $\left(-5,-\frac{1}{4}\right)$ $\begin{aligned} & y=\frac{2}{x-3} \\ & y=\frac{2}{-5-3} \\ & y=\frac{2}{-8} \\ & y=-1 / 4 \end{aligned}$	$\begin{aligned} & \frac{\text { degree } 1}{\text { degree } 2} \\ & \Rightarrow \\ & y=0 \end{aligned}$
$y=\frac{\sqrt{2} x^{2}+7 x+6}{\llbracket x^{2}-2 x-8}$	$\begin{aligned} & y=\frac{(2 x+3)(x+2)}{(x+2)(x-4)} \\ & y=\frac{2 x+3}{x-4} \end{aligned}$ where $x \neq-2$	$\begin{aligned} & x=4 \text { V.a. } \\ & x=-2 \quad \text { POD } \\ & y=\frac{2 x+3}{x-4} \\ &=\frac{2(-2)+3}{-2-4} \quad\left(-2, \frac{1}{6}\right) \\ &=\frac{-1}{-6}=+\frac{1}{6} \end{aligned}$	$\frac{\text { desree } 2}{\text { desree } 2}$ h.a. $\begin{aligned} & y=\frac{2}{1} \\ & y=2 \end{aligned}$
$y=\frac{x^{2}+3 x-4}{x-1}$	$\begin{gathered} y=\frac{(x-1)(x+4)}{x-1} \\ y=x+4, \\ \text { wher } \\ x \neq 1 \end{gathered}$	POD when $x=1$ $\begin{aligned} y & =x+4 \\ & =1+4 \\ & =5 \quad(1,5) \end{aligned}$	$\frac{\text { degree } 2}{\text { degree } 1}$ \Rightarrow slant asymp.

Whiteboards -Characteristics of Rational Functions

Without using technology, accurately sketch the function's graph: $y=\frac{\pi x^{2}+3 x-10}{\pi\left(1 x^{2}-4\right.}$
Give the values of the graph's:
\checkmark NPVs
\odot asymptote equations L) coordinates of PODs - x - and y-intercepts
$y=\frac{(x-2)(x+5)}{(x-2)(x+2)}$, where $x \neq 2$

NOUS:

$$
\begin{aligned}
& x=-2 \text { va. } \\
& x=2 \text { POD } \\
& y=\frac{x+5}{x+2} \Rightarrow y=\frac{2+5}{2+2}=\frac{7}{4} \\
& (2,7 / 4)
\end{aligned}
$$

hor. asymp : (degree same) $y=\frac{1}{1}, y=1$
x-int $\quad y=\frac{x+5}{x+2} \quad(x+2) 0=\left(\frac{x+5}{x+2}\right)^{(x+2)}$

$$
0=\begin{aligned}
& x+5 \\
& x=-5
\end{aligned} \quad(-5,0)
$$

$$
\begin{equation*}
\frac{y-\ln t}{\operatorname{lot} \alpha=0} \quad y=\frac{0+5}{0+2} \tag{0,5/2}
\end{equation*}
$$

$$
\begin{array}{l|l|}
x & y \\
-5 & 0 \\
-3 & \frac{-3+5}{-3+2}=\frac{2}{-1}=-2 \\
-1 & \frac{-1+5}{x+2}=\frac{4}{1}=4 \\
3 & \frac{3+5}{3+2}=\frac{8}{5}=1^{3 / 5} \\
4 & \frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}
\end{array}
$$

$$
y=5 / 2
$$

Example (TB page 453, \#as)
Write the equation of the pictured rational function.

$$
\begin{aligned}
& y=\frac{x(x+6)}{x(x+2)} \\
& \underbrace{y=\frac{x^{2}+6 x}{x^{2}+2 x}} \\
& \text { hay=+(y+1})
\end{aligned}
$$

(9.2) TB p 452: 4-7, 8ac, 11, 14

[^0]: Whiteboards - PODs and horizontal asymptotes

