
9.3 **Connecting Graphs and Rational Equations**

To solve rational equations algebraically:

- Determine the value of all non-permissible values. List them.
- Find the least-common denominator (LCD).
- Multiply each term in the equation by the LCD, to eliminate fractions
- Solve this simpler equation. If a solution is an NPV, reject it.

Example

a) Solve algebraically:

elgebraically: $\frac{3}{x} = 1 + \frac{x - 13}{6}$ NPV = 0 $6 \times \left(\frac{3}{x}\right) = 6 \times (1) + 6 \times \left(\frac{x - 13}{6}\right)$ ECD would be 6 x.

Multiply each term in the equation by 6 x.

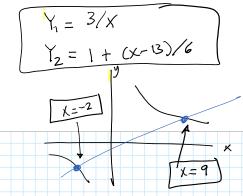
$$18 = 6x + x(x-13)$$

$$18 = 6x + x^2 - 13x$$

$$0 = x^2 - 7x - 18$$

$$0 = (x + 2)(x - 9)$$

$$x + 2 = 0$$


$$x = 9$$

(neither one is an NPV, so they are Loth valid solutions)

b) Verify the solution graphically.

(SKIPPING THIS)

$$\frac{3}{x} = 1 + \frac{x-13}{6}$$

There are two ways to solve graphically.

1) Graph $Y_1 = LHS$ of equation

Graph Y_2 = RHS of equation.

Find the x-values where the 2 graphs intersect. OR

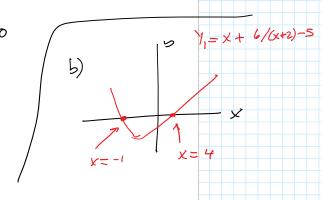
2) Collect all terms of the original equation on one side of the equals sign.

Graph this equation.

Find all of this graph's x-intercepts (zeroes)

$$\frac{3}{x} - 1 - \frac{(x - 13)}{6} = 0$$

$$Y_1 = 3/x - 1 - (x-13)/6$$


Pre-Calc 12 - Unit 4 Page 13

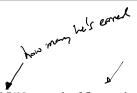
To try:

1a) Find the roots of this rational equation, algebraically:

$$x + \frac{6}{x+2} - 5 = 0$$

$$NPV \quad x = -2$$

2a) Find the roots of this rational equation, algebraically:


braically:
$$1 + \frac{1}{x} = \frac{1}{x+3}$$

$$N \text{ PV} \quad \text{X} = 0$$

$$1 + \frac{1}{x} = \frac{1}{x+3}$$

$$1 + \frac{1}{$$

$$(x+3)$$
 + $(x+3)$ = $x(x+3)$ x $x+3$ $x+4$ $x+3$ $x+4$ $x+3$ $x+4$ $x+3$ $x+4$ x

Pre-Calc 12 - Unit 4 Page 14

Example

Bert has scored 7/10 on each of five math quizzes so far this year. He really wants an "A" in his quiz bin. He is sure he can get 10/10 on every quiz for the rest of the semester. How many more quizzes does he need to write in order to get 86% in his quiz bin?

Right now,

Bert's quiz percentage =
$$\frac{Bert's\ quiz\ pts}{total\ quiz\ pts} = \frac{35}{50} = 0.7$$
 or 70% .

If \sqrt{x} = number of additional quizzes written and Bert succeeds in getting 10/10 on each quiz, then

$$\frac{35 + 10x}{50 + 10x} = (0.86)(50 + 10x)$$

$$\frac{50 + 10x}{50 + 10x} = 43 + 8.6x$$

$$\frac{10x}{x} = -50$$

$$\frac{10x}{x} = -50$$

$$\frac{10x}{x} = -50$$

$$\frac{10x}{x} = -8.6x$$

$$\frac{10x}{x} = 8$$

multiply by Sotiox, to get nil of the fraction

$$35+10x = 43 + 8.6x$$

$$35 + L4x = 43$$

$$4.4x = 8$$

Cheels:
$$35 + 10 \times$$
 $50 + 10 \times$
 $50 + 10 \times 6$
 $50 + 10 \times 6$

Rational Equations and Word Problems - group worksheet

9.3 TB p 465: 1, 2, 3-6(ac), 9, 11