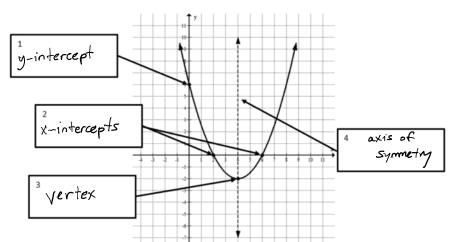
PC11 Ch 4 Hand-in Very Partial

Monday, February 13, 2023 10:06 AM

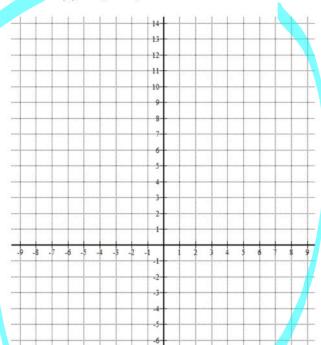

PC11 Ch 4 Hand-in 2023

PreCalc 11 Chapter 4 Assignment – hand in for completion marks

Name: Key

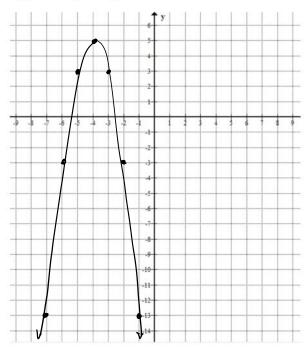
Complete the following questions showing all work and steps where applicable.

1a) Add the correct term to name each characteristic shown in the boxes.


- b) vertex coordinates: (4,-2)
- c) minimum of this function is: -2
- d) axis of symmetry equation: $\chi = 4$
- e) x-intercept coordinates are: (2,0) and (6,0)
- f) y-intercept coordinates: (0,6)
- g) range: $y \ge -2$

2. Complete the table below.

Function	Direction of opening	Vertex	Axis of Symmetry Equation	Is it congruent (exact same size/shape) to $y = x^2$?
$y = x^2$	ир	(0,0)	x = 0	yes
$y = 3x^2 + 5$	wp	(0,5)	X= Φ	no
$y = -x^2 - 9$				
$y = \left(x+6\right)^2$				
$y = 5\left(x-2\right)^2$	up	(2,0)	x = 2	'nO


3. Accurately graph each function below on the provided grid. Correctly plot 7 points for each graph.

a)
$$y = (x-1)^2 - 2$$

b)
$$y = -2(x+4)^2 + 5$$

Domain:

XER Domain:

Range:

y \(\in \) Range:

4. Use the following information, determine the equation of the quadratic function.

The vertex of the graph is at (-3, 2) and one of the x-intercepts is at (-1,0).

$$y = \alpha(x+3)^2 + 2$$

$$0 = a(-1+3)^2 + 2$$

$$0 = a(2)^2 + 2$$

$$0 = 4a + 2$$

$$-2 = \frac{40}{4}$$

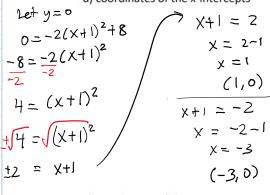
$$\frac{-2}{4} = \frac{4a}{4}$$

$$\frac{-2}{4} = a$$
, so $a = -\frac{1}{2}$

$$y = -\frac{1}{2} (x+3)^2 + 2$$

- 5. Give the requested characteristics of this function: $y = -2(x+1)^2 + 8$
- a) coordinates of the vertex

(-1,8)


b) direction of opening

dows

c) equation of the axis of symmetry

$$X = -1$$

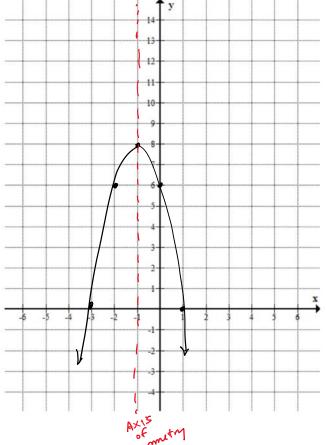
d) coordinates of the x-intercepts

e) coordinates of the y-intercept

Let
$$x=0$$

 $y = -2(0+1)^{2} + 8$
 $y = -2(1)^{2} + 8$
 $y = -2(1) + 8$
 $y = -2 + 8$
 $y = 6$ (0,6)

f) value of the Max or Min


g) domain

XETR

h) range

y = 8

i) For the parabola's graph, accurately plot 5 points. Using a dotted line, graph the axis of symmetry.

6. Convert each of the following equations to standard/vertex form by completing the square.

a)
$$y = x^{2} - 4x + 9$$
 $\left(-\frac{4}{2}\right)^{2} = 4$

$$y = x^{2} - 4x + 4 - 4 + 9$$

$$y = (x^{2} - 4x + 4) + 5$$

$$y = (x - 2)^{2} + 5$$

b)
$$y = 2x^2 - 12x + 16$$

c)
$$y = 2x^{2} - 8x + 9$$

$$y = 2(x^{2} - 4x + 4 - 4) + 9$$

$$y = 2(x^{2} - 4x + 4) - 8 + 9$$

$$y = 2(x^{2} - 4x + 4) - 8 + 9$$

$$y = 2(x^{2} - 4x + 4) - 8 + 9$$

7. Complete the table below.

	$y = x^2 + 6x + 8$	$y = -3x^2 + 14x + 5$	
direction of opening		Jonn	
Coordinates of the y-intercept		Let $x = 0$ $y = -3(0)^2 + 14(0) + 5$ y = 5 (0, 5)	
Coordinates of the x- intercepts Hint: convert to factored form		$y = -3x^{2} + 14x + 5$ $y = -(3x^{2} - 14x - 5) AC = -5$ $y = -(3x^{2} - 15x + 1x - 5)$ $y = -[3x(x - 5) + 1(x - 5)]$ $y = -[(x - 5) (3x + 1)]$ $x - 5 = 6$ $x = 5$ $(5,0) \text{ and } (-1/3,0)$	-15 n = -14
equation of the axis of symmetry Hint: you do NOT have to change to vertex form to find this	It's halfway between the X-intercepts:	$X = \frac{5 + \frac{1}{3}}{2}$ $X = \frac{1\frac{5}{3} + \frac{-1}{3}}{2}$ $X = \frac{1\frac{1}{3}}{2}$ $X = \frac{1\frac{1}{3}}{2}$ $X = \frac{1\frac{1}{4}}{6}$ $X = \frac{7}{3}$	